Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb;129(2):172-176.
doi: 10.1016/j.jbiosc.2019.08.014. Epub 2019 Oct 11.

Overexpression of the gene encoding alternative oxidase for enhanced glucose consumption in oxalic acid producing Aspergillus niger expressing oxaloacetate hydrolase gene

Affiliations

Overexpression of the gene encoding alternative oxidase for enhanced glucose consumption in oxalic acid producing Aspergillus niger expressing oxaloacetate hydrolase gene

Isato Yoshioka et al. J Biosci Bioeng. 2020 Feb.

Abstract

The filamentous fungus Aspergillus niger is a well-known hyper-producer of organic acids such as citric acid and oxalic acid. This fungus possesses the cyanide (CN)-insensitive respiration pathway consisting of alternative oxidase (EC 1.10.3.11; AOX), in addition to the cytochrome pathway. Since this CN-insensitive respiration pathway reoxidizes NADH without ATP production, it contributes to continuous glycolysis in A. niger. In this study, to show the availability of aoxA gene encoding AOX as a tool for metabolic engineering, we generated efficient oxalic acid (OA)-producers by genetic engineering of A. niger using aoxA gene. The OA-producing strain EOAH-1, generated by overexpression of the oxaloacetate hydrolase (EC 3.7.1.1; OAH) gene oahA in A. niger WU-2223L, produced 28 g/L OA from 30 g/L glucose during the 9-day cultivation period. Moreover, the strain EAOXOAH-1, generated by overexpression of both aoxA and oahA genes in strain WU-2223L, produced 28 g/L OA during the 7-day cultivation period. Strain EAOXOAH-1 showed higher glucose consumption rate than EOAH-1 did, indicating that overexpression of aoxA contributed to the acceleration of glucose consumption, and that the OA production period was shortened by 2 days. Thus, we clearly show that AOX gene must be an effective tool in metabolic engineering for efficient organic acids production from carbohydrates.

Keywords: Alternative oxidase; Aspergillus niger; Glycolysis; Metabolic engineering; Oxalic acid.

PubMed Disclaimer

MeSH terms

LinkOut - more resources