Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice
- PMID: 31611669
- DOI: 10.1038/s41563-019-0485-2
Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice
Abstract
Epitaxially fused colloidal quantum dot (QD) superlattices (epi-SLs) may enable a new class of semiconductors that combine the size-tunable photophysics of QDs with bulk-like electronic performance, but progress is hindered by a poor understanding of epi-SL formation and surface chemistry. Here we use X-ray scattering and correlative electron imaging and diffraction of individual SL grains to determine the formation mechanism of three-dimensional PbSe QD epi-SL films. We show that the epi-SL forms from a rhombohedrally distorted body centred cubic parent SL via a phase transition in which the QDs translate with minimal rotation (~10°) and epitaxially fuse across their {100} facets in three dimensions. This collective epitaxial transformation is atomically topotactic across the 103-105 QDs in each SL grain. Infilling the epi-SLs with alumina by atomic layer deposition greatly changes their electrical properties without affecting the superlattice structure. Our work establishes the formation mechanism of three-dimensional QD epi-SLs and illustrates the critical importance of surface chemistry to charge transport in these materials.
References
-
- Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).
-
- Lazarenkova, O. L. & Balandin, A. A. Miniband formation in a quantum dot crystal. J. Appl. Phys. 89, 5509–5515 (2001).
-
- Jiang, C.-W. & Green, M. A. Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006).
-
- Whitham, K. et al. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 15, 557–563 (2016).
-
- Gómez-Campos, F. M., Rodríguez-Bolívar, S. & Califano, M. High-mobility toolkit for quantum dot films. ACS Photon. 3, 2059–2067 (2016).
LinkOut - more resources
Full Text Sources
Other Literature Sources