Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec;13(6):1714-1722.
doi: 10.1109/TBCAS.2019.2947130. Epub 2019 Oct 14.

Frameworks for Efficient Brain-Computer Interfacing

Frameworks for Efficient Brain-Computer Interfacing

Daniel Valencia et al. IEEE Trans Biomed Circuits Syst. 2019 Dec.

Abstract

One challenge present in brain-computer interface (BCI) circuits is finding a balance between real-time on-chip processing in-vivo and wireless transmission of neural signals for off-chip in-silico processing. This article presents three potential frameworks for investigating an area- and energy-efficient realization of BCI circuits. The first framework performs spike detection on the filtered neural signal on a brain-implantable chip and only transmits detected spikes wirelessly for offline classification and decoding. The second framework performs in-vivo compression of the on-chip detected spikes prior to wireless transmission for substantially reducing wireless transmission overhead. The third framework performs spike sorting in-vivo on the brain-implantable chip to classify detected spikes on-chip and hence, even further reducing wireless data transmission rate at the expense of more signal processing. To alleviate the on-chip computation of spike sorting and also utilizing a more area- and energy-effective design, this work employs, for the first time, to the best of our knowledge, an artificial neural network (ANN) instead of using relatively computationally-intensive conventional spike sorting algorithms. The ASIC implementation results of the designed frameworks are presented and their feasibility for efficient in-vivo processing of neural signals is discussed. Compared to the previously-published BCI systems, the presented frameworks reduce the area and power consumption of implantable circuits.

PubMed Disclaimer

Publication types

LinkOut - more resources