New methods of removing debris and high-throughput counting of cyst nematode eggs extracted from field soil
- PMID: 31613901
- PMCID: PMC6793949
- DOI: 10.1371/journal.pone.0223386
New methods of removing debris and high-throughput counting of cyst nematode eggs extracted from field soil
Abstract
The soybean cyst nematode (SCN), Heterodera glycines, is the most damaging pathogen of soybeans in the United States. To assess the severity of nematode infestations in the field, SCN egg population densities are determined. Cysts (dead females) of the nematode must be extracted from soil samples and then ground to extract the eggs within. Sucrose centrifugation commonly is used to separate debris from suspensions of extracted nematode eggs. We present a method using OptiPrep as a density gradient medium with improved separation and recovery of extracted eggs compared to the sucrose centrifugation technique. Also, computerized methods were developed to automate the identification and counting of nematode eggs from the processed samples. In one approach, a high-resolution scanner was used to take static images of extracted eggs and debris on filter papers, and a deep learning network was trained to identify and count the eggs among the debris. In the second approach, a lensless imaging setup was developed using off-the-shelf components, and the processed egg samples were passed through a microfluidic flow chip made from double-sided adhesive tape. Holographic videos were recorded of the passing eggs and debris, and the videos were reconstructed and processed by custom software program to obtain egg counts. The performance of the software programs for egg counting was characterized with SCN-infested soil collected from two farms, and the results using these methods were compared with those obtained through manual counting.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures










References
-
- Allen TW, Bradley CA, Sisson AJ, Byamukama E, Chilvers MI, Coker CM, et al. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Heal Prog. 2017;18: 19–27. 10.1094/PHP-RS-16-0066 - DOI
-
- Gerdemann JW. Relation of a large soil-borne spore to phycomycetous mycorrhizal infections. Mycologia. 1955;47: 619 10.2307/3755574 - DOI
-
- Byrd DW, Barker KR, Ferris H, Nusbaum CJ, Griffin WE, Small RH, et al. Two semi-automatic elutriators for extracting nematodes and certain fungi from soil. J Nematol. 1976;8: 206–12. Available: http://www.ncbi.nlm.nih.gov/pubmed/19308224%0Ahttp://www.pubmedcentral.n... - PMC - PubMed
-
- Niblack TL, Heinz RD, Smith GS, Donald PA. Distribution, density, and diversity of Heterodera glycines in Missouri. J Nematol. 1993;25: 880–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/19279857%0Ahttp://www.pubmedcentral.n... - PMC - PubMed
-
- Faghihi J, Ferris JM. An efficient new device to release eggs from Heterodera glycines. J Nematol. 2000;32: 411–413. Available: http://journals.fcla.edu/jon/article/view/67182%5Cnhttp://www.ncbi.nlm.n... - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources