Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan 6;26(2):192-205.
doi: 10.1093/ibd/izz218.

Prolyl Hydroxylase Inhibition Mitigates Pouchitis

Affiliations
Review

Prolyl Hydroxylase Inhibition Mitigates Pouchitis

Jonathan M Harnoss et al. Inflamm Bowel Dis. .

Abstract

Background: Pouchitis is the most common long-term complication after restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) for ulcerative colitis (UC) or familial adenomatous polyposis (FAP), which can eventually progress to pouch failure, necessitating permanent stoma construction. Hypoxia-inducible transcription factor prolyl hydroxylase-containing enzymes (PHD1, PHD2, and PHD3) are molecular oxygen sensors that control adaptive gene expression through hypoxia-inducible factor (HIF). Emerging evidence supports PHDs as being therapeutic targets in intestinal inflammation. However, pharmacological inhibition of PHDs has not been validated as a treatment strategy in pouchitis.

Methods: PHD1-3 mRNA and protein expression were analyzed in mucosal pouch and prepouch ileal patient biopsies. After establishment of a preclinical IPAA model in rats, the impact of the pan-PHD small-molecule inhibitor dimethyloxalylglycine (DMOG) on dextran sulfate sodium (DSS)-induced pouchitis was studied. Clinical and molecular parameters were investigated.

Results: PHD1, but not PHD2 or PHD3, was overexpressed in pouchitis in biopsies of patients with IPAA for UC but not FAP. In addition, PHD1 expression correlated with disease activity. DMOG treatment profoundly mitigated DSS-induced pouchitis in a rodent IPAA model. Mechanistically, DMOG restored intestinal epithelial barrier function by induction of tight junction proteins zona occludens-1 and claudin-1 and alleviation of intestinal epithelial cell apoptosis, thus attenuating pouch inflammation.

Conclusions: Together, these results establish a strong therapeutic rationale for targeting PHD1 with small-molecule inhibitors in pouchitis after IPAA for UC.

Keywords: IPAA; hydroxylase inhibition; pouchitis.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources