Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 15;29(3):603-616.e5.
doi: 10.1016/j.celrep.2019.09.019.

Metalloprotease-Dependent Attenuation of BMP Signaling Restricts Cardiac Neural Crest Cell Fate

Affiliations
Free article

Metalloprotease-Dependent Attenuation of BMP Signaling Restricts Cardiac Neural Crest Cell Fate

Hiroyuki N Arai et al. Cell Rep. .
Free article

Abstract

In higher vertebrates, cephalic neural crest cells (NCCs) form craniofacial skeleton by differentiating into chondrocytes and osteoblasts. A subpopulation of cephalic NCCs, cardiac NCCs (CNCCs), migrates to the heart. However, CNCCs mostly do not yield skeletogenic derivatives, and the molecular mechanisms of this fate restriction remain elusive. We identify a disintegrin and metalloprotease 19 (Adam19) as a position-specific fate regulator of NCCs. Adam19-depleted mice abnormally form NCC-derived cartilage in their hearts through the upregulation of Sox9 levels in CNCCs. Moreover, NCC-lineage-specific Sox9-overexpressing mice recapitulate CNCC chondrogenesis. In vitro experiments show that Adam19 mediates the cleavage of bone morphogenic protein (BMP) type I receptor Alk2 (Acvr1), whereas pharmacogenetic approaches reveal that Adam19 inhibits CNCC chondrogenesis by suppressing the BMP-Sox9 cascade, presumably through processing Alk2. These findings suggest a metalloprotease-dependent mechanism attenuating cellular responsiveness to BMP ligands, which is essential for both the positional restriction of NCC skeletogenesis and normal heart development.

Keywords: Alk2; Sox9; a disintegrin and metalloprotease 19; bone morphogenic protein; cardiac neural crest cells; skeletogenesis.

PubMed Disclaimer

Publication types

MeSH terms