Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies
- PMID: 31635329
- PMCID: PMC6826966
- DOI: 10.3390/cancers11101591
Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies
Abstract
This review highlights new findings that have deepened our understanding of the mechanisms of leukemogenesis, therapy and resistance in acute promyelocytic leukemia (APL). Promyelocytic leukemia-retinoic acid receptor α (PML-RARa) sets the cellular landscape of acute promyelocytic leukemia (APL) by repressing the transcription of RARa target genes and disrupting PML-NBs. The RAR receptors control the homeostasis of tissue growth, modeling and regeneration, and PML-NBs are involved in self-renewal of normal and cancer stem cells, DNA damage response, senescence and stress response. The additional somatic mutations in APL mainly involve FLT3, WT1, NRAS, KRAS, ARID1B and ARID1A genes. The treatment outcomes in patients with newly diagnosed APL improved dramatically since the advent of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). ATRA activates the transcription of blocked genes and degrades PML-RARα, while ATO degrades PML-RARa by promoting apoptosis and has a pro-oxidant effect. The resistance to ATRA and ATO may derive from the mutations in the RARa ligand binding domain (LBD) and in the PML-B2 domain of PML-RARa, but such mutations cannot explain the majority of resistances experienced in the clinic, globally accounting for 5-10% of cases. Several studies are ongoing to unravel clonal evolution and resistance, suggesting the therapeutic potential of new retinoid molecules and combinatorial treatments of ATRA or ATO with different drugs acting through alternative mechanisms of action, which may lead to synergistic effects on growth control or the induction of apoptosis in APL cells.
Keywords: APL; ATO; ATRA; NGS; ascorbate; resistance; therapy.
Conflict of interest statement
The authors declare no conflicts of interests.
Figures
References
-
- Alcalay M., Zangrilli D., Pandolfi P.P., Longo L., Mencarelli A., Giacomucci A., Rocchi M., Biondi A., Rambaldi A., Lo Coco F., et al. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor α locus. Proc. Natl. Acad. Sci. USA. 1991;88:1977–1981. doi: 10.1073/pnas.88.5.1977. - DOI - PMC - PubMed
-
- Grignani F., Ferrucci P.F., Testa U., Talamo G., Fagioli M., Alcalay M., Mencarelli A., Grignani F., Peschle C., Nicoletti I., et al. The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell. 1993;74:423–431. doi: 10.1016/0092-8674(93)80044-F. - DOI - PubMed
-
- Hadjimichael C., Chanoumidou K., Nikolaou C., Klonizakis A., Theodosi G.I., Makatounakis T., Papamatheakis J., Kretsovali A. Promyelocytic leukemia protein is an essential regulator of stem cell pluripotency and somatic cell reprogramming. Stem Cell Rep. 2017;8:1366–1378. doi: 10.1016/j.stemcr.2017.03.006. - DOI - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
