Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb;19(2):189-194.
doi: 10.1038/s41563-019-0501-6. Epub 2019 Oct 21.

Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems

Affiliations

Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems

Virgil Andrei et al. Nat Mater. 2020 Feb.

Abstract

The photoelectrochemical (PEC) production of syngas from water and CO2 represents an attractive technology towards a circular carbon economy. However, the high overpotential, low selectivity and cost of commonly employed catalysts pose challenges for this sustainable energy-conversion process. Here we demonstrate highly tunable PEC syngas production by integrating a cobalt porphyrin catalyst immobilized on carbon nanotubes with triple-cation mixed halide perovskite and BiVO4 photoabsorbers. Empirical data analysis is used to clarify the optimal electrode selectivity at low catalyst loadings. The perovskite photocathodes maintain selective aqueous CO2 reduction for one day at light intensities as low as 0.1 sun, which provides pathways to maximize daylight utilization by operating even under low solar irradiance. Under 1 sun irradiation, the perovskite-BiVO4 PEC tandems sustain bias-free syngas production coupled to water oxidation for three days. The devices present solar-to-H2 and solar-to-CO conversion efficiencies of 0.06 and 0.02%, respectively, and are able to operate as standalone artificial leaves in neutral pH solution.

PubMed Disclaimer

References

    1. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).
    1. Khodakov, A. Y., Chu, W. & Fongarland, P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007).
    1. Bharadwaj, S. S. & Schmidt, L. D. Catalytic partial oxidation of natural gas to syngas. Fuel Process. Technol. 42, 109–127 (1995).
    1. Abdoulmoumine, N., Adhikari, S., Kulkarni, A. & Chattanathan, S. A review on biomass gasification syngas cleanup. Appl. Energy 155, 294–307 (2015).
    1. Graves, C., Ebbesen, S. D., Mogensen, M. & Lackner, K. S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 15, 1–23 (2011).