Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov;22(11):1806-1819.
doi: 10.1038/s41593-019-0505-1. Epub 2019 Oct 21.

Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence

Affiliations

Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence

Hei-Man Chow et al. Nat Neurosci. 2019 Nov.

Abstract

Prediabetes and Alzheimer's disease both increase in prevalence with age. The former is a risk factor for the latter, but a mechanistic linkage between them remains elusive. We show that prediabetic serum hyperinsulinemia is reflected in the cerebrospinal fluid and that this chronically elevated insulin renders neurons resistant to insulin. This leads to abnormal electrophysiological activity and other defects. In addition, neuronal insulin resistance reduces hexokinase 2, thus impairing glycolysis. This hampers the ubiquitination and degradation of p35, favoring its cleavage to p25, which hyperactivates CDK5 and interferes with the GSK3β-induced degradation of β-catenin. CDK5 contributes to neuronal cell death while β-catenin enters the neuronal nucleus and re-activates the cell cycle machinery. Unable to successfully divide, the neuron instead enters a senescent-like state. These findings offer a direct connection between peripheral hyperinsulinemia, as found in prediabetes, age-related neurodegeneration and cognitive decline. The implications for neurodegenerative conditions such as Alzheimer's disease are described.

PubMed Disclaimer

References

    1. Global Report on Diabetes (World Health Organization, 2016).
    1. Gjedde, A. & Marrett, S. Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo. J. Cereb. Blood Flow Metab. 21, 1384–1392 (2001). - PubMed
    1. Nehlig, A., Wittendorp-Rechenmann, E. & Lam, C. D. Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. J. Cereb. Blood Flow Metab. 24, 1004–1014 (2004). - PubMed
    1. Liu, C. C. et al. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain. J. Neurosci. 35, 5851–5859 (2015). - PubMed - PMC
    1. Bingham, E. M. et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes 51, 3384–3390 (2002). - PubMed

Publication types

MeSH terms