Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep 17:2019:5924878.
doi: 10.1155/2019/5924878. eCollection 2019.

Molecular Profiles of Cell-to-Cell Variation in the Regenerative Potential of Mesenchymal Stromal Cells

Affiliations
Review

Molecular Profiles of Cell-to-Cell Variation in the Regenerative Potential of Mesenchymal Stromal Cells

Kim C O'Connor. Stem Cells Int. .

Abstract

Cell-to-cell variation in the regenerative potential of mesenchymal stromal cells (MSCs) impedes the translation of MSC therapies into clinical practice. Cellular heterogeneity is ubiquitous across MSC cultures from different species and tissues. This review highlights advances to elucidate molecular profiles that identify cell subsets with specific regenerative properties in heterogeneous MSC cultures. Cell surface markers and global signatures are presented for proliferation and differentiation potential, as well as immunomodulation and trophic properties. Key knowledge gaps are discussed as potential areas of future research. Molecular profiles of MSC heterogeneity have the potential to enable unprecedented control over the regenerative potential of MSC therapies through the discovery of new molecular targets and as quality attributes to develop robust and reproducible biomanufacturing processes. These advances would have a positive impact on the nascent field of MSC therapeutics by accelerating the development of therapies with more consistent and effective treatment outcomes.

PubMed Disclaimer

Conflict of interest statement

The author is an inventor listed on patents and patent applications entitled “Method for Identification and Culture of Multipotent Mesenchymal Stem Cells with High Proliferation Potential” issued in Austria, China, and Germany; pending issuance in France, Switzerland, and UK; and under review in Canada, India, Japan, and the US. In addition, the author is the inventor listed on a patent application entitled “Cell-Surface Marker of Early MSC Aging” pending issuance in the US and under review in Australia, Canada, and Europe.

Figures

Figure 1
Figure 1
Applications of molecular profiles of MSC heterogeneity. Surface markers and global signatures identify cell subsets with specific regenerative properties in heterogeneous MSC cultures. Molecular profiles of MSC heterogeneity have application as molecular targets and quality attributes in the production of MSC therapeutics. Targeted molecules can be regulated by small-molecule and biologic pharmaceuticals, as well as by precision gene editing. Quality attributes enable enrichment of a MSC population and its assessment during all stages of biomanufacturing of MSC therapies from cell isolation to culture expansion to storage. This control over the composition and function of MSC therapies has the potential to improve treatment outcomes for patients.

Similar articles

Cited by

References

    1. Trounson A., McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22. doi: 10.1016/j.stem.2015.06.007. - DOI - PubMed
    1. Friedenstein A. J., Chailakhjan R. K., Lalykina K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics. 1970;3(4):393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x. - DOI - PubMed
    1. Friedenstein A. J., Chailakhyan R. K., Latsinik N. V., Panasyuk A. F., Keiliss-Borok I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17(4):331–340. doi: 10.1097/00007890-197404000-00001. - DOI - PubMed
    1. Bianco P., Robey P. G., Simmons P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–319. doi: 10.1016/j.stem.2008.03.002. - DOI - PMC - PubMed
    1. Caplan A. I. Mesenchymal stem cells. Journal of Orthopaedic Research. 1991;9(5):641–650. doi: 10.1002/jor.1100090504. - DOI - PubMed

LinkOut - more resources