Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 13:94:1-124.
doi: 10.1016/j.simyco.2019.05.001. eCollection 2019 Sep.

Genera of phytopathogenic fungi: GOPHY 3

Affiliations

Genera of phytopathogenic fungi: GOPHY 3

Y Marin-Felix et al. Stud Mycol. .

Abstract

This paper represents the third contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions, information about the pathology, distribution, hosts and disease symptoms for the treated genera, as well as primary and secondary DNA barcodes for the currently accepted species included in these. This third paper in the GOPHY series treats 21 genera of phytopathogenic fungi and their relatives including: Allophoma, Alternaria, Brunneosphaerella, Elsinoe, Exserohilum, Neosetophoma, Neostagonospora, Nothophoma, Parastagonospora, Phaeosphaeriopsis, Pleiocarpon, Pyrenophora, Ramichloridium, Seifertia, Seiridium, Septoriella, Setophoma, Stagonosporopsis, Stemphylium, Tubakia and Zasmidium. This study includes three new genera, 42 new species, 23 new combinations, four new names, and three typifications of older names.

Keywords: Allophoma pterospermicola Q. Chen & L. Cai; Alternaria aconidiophora Iturrieta-González, Dania García & Gené; Alternaria altcampina Iturrieta-González, Dania García & Gené; Alternaria chlamydosporifera Iturrieta-González, Dania García & Gené; Alternaria curvata Iturrieta-González, Dania García & Gené; Alternaria fimeti Iturrieta-González, Dania García & Gené; Alternaria inflata Iturrieta-González, Dania García & Gené; Alternaria lawrencei Iturrieta-González, Dania García & Gené; Alternaria montsantina Iturrieta-González, Dania García & Gené; Alternaria pobletensis Iturrieta-González, Dania García & Gené; Alternaria pseudoventricosa Iturrieta-González, Dania García & Gené; Arezzomyces Y. Marín & Crous; Arezzomyces cytisi (Wanas. et al.) Y. Marín & Crous; Ascochyta chrysanthemi F. Stevens; Brunneosphaerella roupeliae Crous; DNA barcodes; Elsinoe picconiae Crous; Elsinoe veronicae Crous, Thangavel & Y. Marín; Fungal systematics; Globoramichloridium Y. Marín & Crous; Globoramichloridium indicum (Subram.) Y. Marín & Crous; Neosetophoma aseptata Crous, R.K. Schumach. & Y. Marín; Neosetophoma phragmitis Crous, R.K. Schumach. & Y. Marín; Neosetophoma sambuci Crous, R.K. Schumach. & Y. Marín; Neostagonospora sorghi Crous & Y. Marín; New taxa; Parastagonospora novozelandica Crous, Thangavel & Y. Marín; Parastagonospora phragmitis Crous & Y. Marín; Pestalotia unicornis Cooke & Ellis; Phaeosphaeria phoenicicola (Crous & Thangavel) Y. Marín & Crous; Phaeosphaeriopsis aloes Crous & Y. Marín; Phaeosphaeriopsis aloicola Crous & Y. Marín; Phaeosphaeriopsis grevilleae Crous & Y. Marín; Phaeosphaeriopsis pseudoagavacearum Crous & Y. Marín; Pleiocarpon livistonae Crous & Quaedvl.; Pyrenophora avenicola Y. Marín & Crous; Pyrenophora cynosuri Y. Marín & Crous; Pyrenophora nisikadoi Y. Marín & Crous; Pyrenophora novozelandica Y. Marín & Crous; Pyrenophora poae (Baudyš) Y. Marín & Crous; Pyrenophora pseudoerythrospila Y. Marín & Crous; Pyrenophora sieglingiae Y. Marín & Crous; Pyrenophora variabilis Hern.-Restr. & Y. Marín; Pyrenophora wirreganensis (Wallwork et al.) Y. Marín & Crous; Rhynchosphaeria cupressi Nattrass et al; Seiridium cupressi (Nattrass et al.) Bonthond, Sandoval-Denis & Crous; Seiridium pezizoides (de Not.) Crous; Septoriella agrostina (Mapook et al.) Y. Marín & Crous; Septoriella artemisiae (Wanas. et al.) Y. Marín & Crous; Septoriella arundinicola (Wanas. et al.) Y. Marín & Crous; Septoriella arundinis (W.J. Li et al.) Y. Marín & Crous; Septoriella bromi (Wijayaw. et al.) Y. Marín & Crous; Septoriella dactylidicola Y. Marín & Crous; Septoriella dactylidis (Wanas. et al.) Y. Marín & Crous; Septoriella elongata (Wehm.) Y. Marín & Crous; Septoriella forlicesenica (Thambug. et al.) Y. Marín & Crous; Septoriella garethjonesii (Thambug. et al.) Y. Marín & Crous; Septoriella germanica Crous, R.K. Schumach. & Y. Marín; Septoriella hibernica Crous, Quaedvl. & Y. Marín; Septoriella hollandica Crous, Quaedvl. & Y. Marín; Septoriella italica (Thambug. et al.) Y. Marín & Crous; Septoriella muriformis (Ariyaw. et al.) Y. Marín & Crous; Septoriella neoarundinis Y. Marín & Crous; Septoriella neodactylidis Y. Marín & Crous; Septoriella pseudophragmitis Crous, Quaedvl. & Y. Marín; Septoriella rosae (Mapook et al.) Y. Marín & Crous; Septoriella subcylindrospora (W.J. Li et al.) Y. Marín & Crous; Septoriella vagans (Niessl) Y. Marín & Crous; Setophoma brachypodii Crous, R.K. Schumach. & Y. Marín; Setophoma pseudosacchari Crous & Y. Marín; Stemphylium rombundicum Moslemi, Y.P. Tan & P.W.J. Taylor; Stemphylium truncatulae Moslemi, Y.P. Tan & P.W.J. Taylor; Stemphylium waikerieanum Moslemi, Jacq. Edwards & P.W.J Taylor; Vagicola arundinis Phukhams., Camporesi & K.D. Hyde; Wingfieldomyces Y. Marín & Crous; Wingfieldomyces cyperi (Crous & M.J. Wingf.) Y. Marín & Crous; Zasmidium ducassei (R.G. Shivas et al.) Y. Marín & Crous; Zasmidium thailandicum Crous.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Allophoma spp. A, B. Disease symptoms. A. Symptoms caused by Allophoma hayatii (ex-type CBS 142859) on Lantana camara. B. Symptoms caused by Allophoma pterospermicola (ex-type CGMCC 3.19245) on Pterospermum xylocarpum. C–O. Asexual morph. C. Conidiomata of Allophoma pterospermicola (LC12181) sporulating on Maesa montana. D. Conidiomata of Allophoma oligotrophica (ex-type CGMCC 3.18114) sporulating on OA. E. Conidiomata of Allophoma minor (ex-type CBS 325.82). F. Section of the conidiomatal wall of Allophoma minor (ex-type CBS 325.82). G, H. Conidiogenous cells. G.Allophoma piperis (ex-epitype CBS 268.93). H.Allophoma oligotrophica (ex-type CGMCC 3.18114). I–M. Conidia. I.Allophoma minor (ex-type CBS 325.82). J.Allophoma piperis (ex-epitype CBS 268.93). K.Allophoma oligotrophica (ex-type CGMCC 3.18114). L.Allophoma cylindrispora (ex-type CBS 142453). M.Allophoma nicaraguensis (ex-type CBS 506.91). N. Swollen cells of Allophoma hayatii (ex-type CBS 142859). O. Chlamydospores of Allophoma hayatii (ex-type CBS 142859). Scale bars: D, E = 100 μm; O = 50 μm; N = 20 μm; F, I–M = 10 μm; G, H = 5 μm. Pictures A, N–O taken from Babaahmadi et al. (2018); D, H, K, from Chen et al. (2017); E, F, I from Aveskamp et al. (2010); G, J, M from Chen et al. (2015); L from Valenzuela-Lopez et al. (2018).
Fig. 2
Fig. 2
Phylogenetic tree generated from a maximum parsimony analysis based on the combined LSU (860 bp), ITS (480 bp), tub2 (333 bp) and rpb2 (803 bp) sequences of all accepted species of Allophoma. The tree was rooted to Phoma herbarum CBS 615.75. Values above the branches represent parsimony bootstrap support values (> 50 %). Novel sequences and novel taxon are printed in bold. GenBank accession numbers are indicated in Table 1. T, ET and IsoT indicate ex-type, ex-epitype and ex-isotype strains, respectively. TreeBASE: S23493.
Fig. 3
Fig. 3
Allophoma pterospermicola (ex-type CGMCC 3.19245). A, B. Colony on OA (front and reverse). C, D. Colony on MEA (front and reverse). E, F. Colony on PDA (front and reverse). G. Conidiomata sporulating on OA. H, I. Conidiomata. J. Section of conidioma. K. Section of conidiomatal wall. L, M. Conidiogenous cells. N. Conidia. Scale bars: H, J = 20 μm; I = 40 μm; K, N = 10 μm; L, M = 5 μm.
Fig. 4
Fig. 4
Alternaria spp. A–D. Disease symptoms. A.Alternaria dauci on Daucus carota. B.Alternaria linariae on Solanum lycopersicum. C.Alternaria neoipomoeae on Ipomoeae batatas (Photo A.H. Thompson, ARC, South Africa). D.Alternaria solani on Solanum tuberosum (Photo J.E. van der Waals, University of Pretoria, South Africa). E–V. Asexual morph. E–O. Conidiophores. E.Alternaria caricis. F.Alternaria chartarum. G.Alternaria cinerariae. H.Alternaria conjuncta. I.Alternaria elegans. J.Alternaria embellisia. K.Alternaria indefessa. L.Alternaria japonica. M.Alternaria penicillata. N.Alternaria proteae. O.Alternaria tenuissima. P–T. Conidia. P.Alternaria blumeae. Q.Alternaria calendulae. R.Alternaria perpunctulata. S.Alternaria carotiincultae. T.Alternaria triglochinicola. U, V. Conidia producing secondary conidia. U.Alternaria mimicola. V.Alternaria molesta. Scale bars: 10 μm. Pictures A–D, P, Q taken from Woudenberg et al. (2014); E–O, R–V from Woudenberg et al. (2013).
Fig. 5
Fig. 5
Maximum Likelihood (ML) tree constructed with ITS (529 bp), ATPase (1180 bp), gapdh (489 bp), rpb2 (573 bp) and tef1 (239 bp) sequences of ex-type strains of the species in section Infectoriae. The phylogenetic tree was rooted to Alternaria abundans CBS 534.83 and Alternaria breviramosa CBS 121331 (section Chalastospora). Bootstrap support values above 70 % are shown at the nodes. GenBank accession numbers are indicated in Table 2. The novel species described in this study are indicated in bold. T indicates ex-type strain. TreeBASE: S23786.
Fig. 6
Fig. 6
Maximum Likelihood (ML) tree constructed with ITS (576 bp), ATPase (1198 bp) and gapdh (491 bp) sequences of ex-type strains of species in the sections Pseudoalternaria and Chalastospora. The phylogenetic tree was rooted to Alternaria caricis CBS 480.90 and A. scirpicola CBS 481.90 (section Nimbya). Bootstrap support values above 70 % are shown at the nodes. GenBank accession numbers are indicated in Table 2. The novel species described in this study are indicated in bold. T indicates ex-type strain. TreeBASE: S23787.
Fig. 7
Fig. 7
Maximum Likelihood (ML) tree constructed with ITS (523 bp), gapdh (503 bp), rpb2 (860 bp) and tef1 (247 bp) sequences of ex-type strains of species in section Radicina. The phylogenetic tree was rooted to Alternaria caricis CBS 480.90 and A. scirpicola CBS 481.90 (section Nimbya). Bootstrap support values above 70 % are shown at the nodes. GenBank accession numbers are indicated in Table 2. The novel species described in this study are indicated in bold. T indicates ex-type strain. TreeBASE: S23788.
Fig. 8
Fig. 8
Alternaria aconidiophora (ex-type FMR 17111). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D–F. Conidia. Scale bars = 10 μm.
Fig. 9
Fig. 9
Alternaria altcampina (ex-type FMR 16476). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D–I. Conidiophores and conidia. Scale bars: D–E = 20 μm; F–I = 10 μm.
Fig. 10
Fig. 10
Alternaria chlamydosporifera (ex-type FMR 17360). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D–H. Conidiophores and conidia. I. Chlamydospores. Scale bars: D = 50 μm; E, I = 20 μm; F–H = 10 μm.
Fig. 11
Fig. 11
Alternaria curvata (ex-type FMR 16901). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D–F. Conidiophore and conidia. Scale bars = 10 μm.
Fig. 12
Fig. 12
Alternaria fimeti (ex-type FMR 17110). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D–G. Conidiophores and conidia. Scale bars: D = 20 μm; E–G = 10 μm.
Fig. 13
Fig. 13
Alternaria inflata (ex-type FMR 16477). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D, F–G. Conidiophores and conidia. E. Chlamydospores. Scale bars = 10 μm.
Fig. 14
Fig. 14
Alternaria lawrencei (ex-type FMR 17004). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D–K. Conidiophores and conidia. Scale bars: D = 20 μm; E–K = 10 μm.
Fig. 15
Fig. 15
Alternaria montsantina (ex-type FMR 17060). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D–H. Conidiophores and conidia. Scale bars: D = 50 μm; E–H = 10 μm.
Fig. 16
Fig. 16
Alternaria pobletensis (ex-type FMR 16448). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D–I. Conidiophores and conidia. Scale bars: D = 20 μm; E–I = 10 μm.
Fig. 17
Fig. 17
Alternaria pseudoventricosa (ex-type FMR 16900). A. Colonies on PDA. B. Colonies on PCA. C. Colonies on OA. D–F. Conidiophores and conidia. Scale bars: D = 20 μm; E, F = 10 μm.
Fig. 18
Fig. 18
Brunneosphaerella spp. A–E. Disease symptoms. A, B.Brunneosphaerella protearum (epitype CBS H-20335). C.Brunneosphaerella nitidae (holotype CBS H-20334). D, E. Ascomata visible on lesion surface. D.Brunneosphaerella protearum (CBS H-20335). E.Brunneosphaerella nitidae (holotype CBS H-20334). F–H. Vertical sections through ascomata showing wall structure. F.Brunneosphaerella jonkershoekensis (holotype PREM 59447). G, H.Brunneosphaerella protearum (CBS H-20335). I–M. Asci. I.Brunneosphaerella jonkershoekensis (holotype PREM 59447). J, K.Brunneosphaerella nitidae (holotype CBS H-20334). L, M.Brunneosphaerella protearum (CBS H-20335). N–Q. Ascospores. N, O.Brunneosphaerella jonkershoekensis (holotype PREM 59447). P.Brunneosphaerella nitidae (holotype CBS H-20334). Q.Brunneosphaerella protearum (CBS H-20335). R, S. Germinating ascospores. R.Brunneosphaerella nitidae (holotype CBS H-20334). S.Brunneosphaerella protearum (CBS H-20335). Scale bars: G = 75 μm; F, I = 50 μm; H, J–M, P–S = 10 μm; N, O = 5 μm. Pictures A, B, D, F–I, L–O, Q, S taken from Crous et al. (2009b); C, E, J, K, P, R from Crous et al. (2011).
Fig. 19
Fig. 19
Brunneosphaerella roupeliae (ex-type CBS 144602). A. Close-up of leaf spot with ascomata. B, C. Asci with ascospores. D. Germinating ascospores. Scale bars = 10 μm.
Fig. 20
Fig. 20
Disease symptoms of Elsinoe spp. A.Elsinoe ampelina on Vitis vinifera. B.Elsinoe asclepiadea on Asclepias mellodora. C.Elsinoe bidentis on Bidens segetum. D.Elsinoe erythrinae on Erythrina sp. E.Elsinoe eucalypticola on Eucalyptus sp. F.Elsinoe fawcettii on Citrus sp. G.Elsinoe freyliniae on Freylinia lanceolata. H.Elsinoe perseae on Persea americana. I.Elsinoe othonnae on Othonna quinquedentata. J.Elsinoe poinsettiae on Euphorbia sp. K.Elsinoe punicae on Punica granatum. L.Elsinoe terminaliae on Terminalia catappa. Pictures taken from Fan et al. (2017).
Fig. 21
Fig. 21
Elsinoe spp. A–J. Sexual morph. A. Subcutilar ascoma of Elsinoe fecunda. B–D. Asci. B.Elsinoe eucalypticola (ex-type CBS 124765). C, D.Elsinoe fecunda (holotype, PREM 56503). E–J. Ascospores. E–H.Elsinoe eucalypticola (ex-type CBS 124765). I, J.Elsinoe fecunda. K–P. Asexual morph. K, L. Conidiophores. K.Elsinoe asclepiadea (ex-type CPC 18544). L.Elsinoe othonnae (ex-type CBS 139910). M–P. Conidia. M.Elsinoe asclepiadea (ex-type CPC 18544). N.Elsinoe erythrinae (ex-epitype CPC 18542). O.Elsinoe tectificae (ex-type CBS 124777). P.Elsinoe othonnae (ex-type CBS 139910). Scale bars: A = 100 μm; B–D, K–U = 10 μm; E–J = 5 μm; C applies to C and B; J applies I and J. Pictures taken from Fan et al. (2017).
Fig. 22
Fig. 22
RAxML phylogram obtained from the combined ITS (609 bp), LSU (741 bp), rpb2 (747 bp) and tef1 (422 bp) sequence alignment of all accepted species of Elsinoe. The tree was rooted to Myriangium hispanicum CBS 247.33. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % are shown at the nodes. GenBank accession numbers are listed in Table 4. T, ET and IsoT indicate ex-type, ex-epitype and ex-isotype strains, respectively. TreeBASE: S23834.
Fig. 22
Fig. 22
RAxML phylogram obtained from the combined ITS (609 bp), LSU (741 bp), rpb2 (747 bp) and tef1 (422 bp) sequence alignment of all accepted species of Elsinoe. The tree was rooted to Myriangium hispanicum CBS 247.33. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % are shown at the nodes. GenBank accession numbers are listed in Table 4. T, ET and IsoT indicate ex-type, ex-epitype and ex-isotype strains, respectively. TreeBASE: S23834.
Fig. 23
Fig. 23
Elsinoe picconiae (ex-type CBS 145026). A. Colony on OA. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 μm.
Fig. 24
Fig. 24
Elsinoe veronicae (ex-type CBS 145362). A. Colony on OA. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 μm.
Fig. 25
Fig. 25
Exserohilum spp. A–E. Sexual morph. A. Ascomata of Exserohilum minor (ex-isotype IMI 294530). B, C. Asci of Exserohilum minor (ex-isotype IMI 294530). D, E. Ascospores. D.Exserohilum minor (ex-isotype IMI 294530). E.Exserohilum khartoumensis (ex-isotype CBS 132708). F–AA. Asexual morph. F–N. Conidiophores and conidia. F, L.Exserohilum oryzicola (ex-isotype CBS 502.90). G.Exserohilum turcicum (ex-epitype CBS 690.71). H, N.Exserohilum holmii (ex-isotype CBS 413.65 and BRIP 12679). I. Exserohilum pedicellatum (CBS 375.76). J, M.Exserohilum rostratum (CBS 120380, CBS 196.29). K.Exserohilum monoceras (CBS 198.29). O. Detail of the conidial hilum of Exserohilum oryzicola (ex-isotype CBS 502.90). P–AA. Conidia. P, Q, Z, AA.Exserohilum rostratum (CBS 128054, CBS 120380, BRIP 11422). R.Exserohilum holmii (BRIP 12679). S.Exserohilum pedicellatum (BRIP 12040). T, U.Exserohilum turcicum (BPI 431157 holotype). V.Exserohilum oryzicola (BRIP 16229). W.Exserohilum protrudens (BRIP 14816). X.Exserohilum corniculatum (ex-type BRIP 11426). Y.Exserohilum neoregelia (CBS 132833). Scale bars A = 50 μm; others = 10 μm; C applies to B and C; E applies to D and E. Pictures taken from Hernández-Restrepo et al. (2018).
Fig. 26
Fig. 26
RAxML phylogram obtained from the combined ITS (793 bp), gapdh (578 bp) and rpb2 (860 bp) sequence alignment of all the accepted species of Exserohilum. The tree was rooted to Curvularia and Bipolaris. RAxML bootstrap support (BS) values above 70 % are shown in the nodes. GenBank accession numbers are indicated in Table 5. T, ET, IsoT and A indicate ex-type, ex-epitype, ex-isotype and authentic strains. TreeBASE: S23834.
Fig. 27
Fig. 27
Neosetophoma lunariae (ex-type CBS 141409). A. Conidiomata on OA. B. Conidiomata showing ostiolar region. C, D. Conidiogenous cells. E. Conidia. Scale bars = 10 μm; C applies to C and D. Pictures taken from Hernández-Restrepo et al. (2016a).
Fig. 28
Fig. 28
RAxML phylogram obtained from the combined ITS (626 bp) and LSU (852 bp) sequence alignment of members of the family Phaeosphaeriaceae. The tree was rooted to Coniothyrium glycines CBS 124141 and Coniothyrium sidae CBS 135108. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 %and Bayesian posterior probability scores above 0.95 are shown at the nodes. Numbers between parentheses correspond to GenBank accession numbers for ITS and LSU sequences, respectively. T, ET, HT, IsoT, LT and NT indicate ex-type, ex-epitype, holotype, ex-isotype, ex-lectotype and ex-neotype strains, respectively. TreeBASE: S23834.
Fig. 28
Fig. 28
RAxML phylogram obtained from the combined ITS (626 bp) and LSU (852 bp) sequence alignment of members of the family Phaeosphaeriaceae. The tree was rooted to Coniothyrium glycines CBS 124141 and Coniothyrium sidae CBS 135108. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 %and Bayesian posterior probability scores above 0.95 are shown at the nodes. Numbers between parentheses correspond to GenBank accession numbers for ITS and LSU sequences, respectively. T, ET, HT, IsoT, LT and NT indicate ex-type, ex-epitype, holotype, ex-isotype, ex-lectotype and ex-neotype strains, respectively. TreeBASE: S23834.
Fig. 29
Fig. 29
RAxML phylogram obtained from the combined ITS (585 bp), LSU (848 bp) and rpb2 (744 bp) sequence alignment of all accepted species of Neosetophoma. The tree was rooted to Phaeosphaeriopsis glaucopunctata MFLUCC 13-0265 and Phaeosphaeriopsis agavacearum CPC 29122. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers of LSU are listed in Fig. 28, and of the other loci in Table 6, Table 10. T and ET indicate ex-type and ex-epitype strains, respectively. TreeBASE: S23834.
Fig. 30
Fig. 30
Neosetophoma aseptata (ex-type CBS 145363). A. Conidiomata sporulating on OA. B, C. Conidiogenous cells. D. Conidia. Scale bars: A = 300 μm; others = 10 μm.
Fig. 31
Fig. 31
Neosetophoma phragmitis (ex-type CBS 145364). A. Conidiomata sporulating on SNA. B, C. Conidiogenous cells. D. Conidia. Scale bars: A = 200 μm; others = 10 μm.
Fig. 32
Fig. 32
Neosetophoma sambuci (ex-type CBS 145365). A. Conidiomata sporulating on PNA. B. Conidioma on SNA showing papillate neck. C. Conidiogenous cells. D. Conidia. Scale bars: A, B = 200 μm; others = 10 μm.
Fig. 33
Fig. 33
Neostagonospora spp. A, B. Conidioma forming in culture. A.Neostagonospora caricis (ex-type CBS 135092). B.Neostagonospora elegiae (ex-type CBS 135101). C–G. Conidiogenous cells. C, D.Neostagonospora caricis (ex-type CBS 135092). E–G.Neostagonospora elegiae (ex-type CBS 135101). H, I. Conidia. H.Neostagonospora caricis (ex-type CBS 135092). I.Neostagonospora elegiae (ex-type CBS 135101). Scale bars: B = 150 μm; all others = 10 μm; C applies to C and D. Pictures taken from Quaedvlieg et al. (2013).
Fig. 34
Fig. 34
RAxML phylogram obtained from the combined ITS (571 bp), LSU (847 bp), rpb2 (337 bp) and tub2 (304 bp) sequence alignment of all accepted species of Neostagonospora. The tree was rooted to Parastagonospora avenae CBS 289.69 and Parastagonospora nodorum CBS 110109. The novelty proposed in this study is indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers of LSU are listed in Fig. 28, and of the other loci in Tables 7 and . T indicates ex-type strains. TreeBASE: S23834.
Fig. 35
Fig. 35
Neostagonospora sorghi (ex-type CBS 145366). A. Conidiomata sporulating on MEA. B, C. Conidiogenous cells. D. Conidia. Scale bars: A = 200 μm; others = 10 μm.
Fig. 36
Fig. 36
Nothophoma spp. A, B. Disease symptoms. A.Nothophoma quercina (CGMCC 3.19246) on Osmanthus fragrans. B.Nothophoma quercina (LC12187) on Jasminum mesnyi. C–I. Asexual morph. C, D. Conidiomata of Nothophoma anigozanthi (ex-epitype CBS 381.91) sporulating on OA. E–H. Conidia. E.Nothophoma infossa (ex-neotype CBS 123395). F.Nothophoma macrospora (ex-type CBS 140674). G.Nothophoma quercina (CGMCC 3.19246). H.Nothophoma variabilis (ex-type CBS 142457). I. Conidiogenous cells of Nothophoma macrospora (ex-type CBS 140674). Scale bars: C = 200 μm; D = 20 μm; E–I = 10 μm. Pictures C, D taken from Chen et al. (2015); E from Aveskamp et al. (2009); F, I from Crous et al. (2016b); H from Valenzuela-Lopez et al. (2018).
Fig. 37
Fig. 37
Phylogenetic tree generated from a maximum parsimony analysis based on the combined LSU (868 bp), ITS (490 bp), tub2 (336 bp) and rpb2 (845 bp) sequences of all accepted species of Nothophoma. The tree was rooted to Phoma herbarum CBS 615.75. Values above the branches represent parsimony bootstrap support values (> 50 %). GenBank accession numbers are indicated in Table 8. T, ET and NT indicate ex-type, ex-epitype and ex-neotype strains, respectively. TreeBASE: S23494.
Fig. 38
Fig. 38
Parastagonospora spp. A–D. Sexual morph of Parastagonospora nodorum (CBS H-13909). A, B. Ascomata. C, D. Asci and ascospores. E–M. Asexual morph. E, F. Conidiomata. E.Parastagonospora poagena (ex-type CBS 136776). F.Parastagonospora poae (CBS 135091). G–I. Conidiogenous cells. G.Parastagonospora caricis (ex-type CBS H-21304). H.Parastagonospora poae (CBS 135091). I.Parastagonospora poagena (ex-type CBS 136776). J–M. Conidia. J.Parastagonospora caricis (ex-type CBS H-21304). K.Parastagonospora nodorum (CBS H-13909). L.Parastagonospora poae (CBS 135091). M.Parastagonospora poagena (ex-type CBS 136776). Scale bars: C, D, J–M = 10 μm; G–I = 5 μm. Pictures A–D, F–H, J–L taken from Quaedvlieg et al. (2013); E, I, M from Crous et al. (2014b).
Fig. 39
Fig. 39
RAxML phylogram obtained from the combined ITS (575 bp), LSU (848 bp), rpb2 (337 bp) and tef1 (866 bp) sequence alignment of all accepted species of Parastagonospora. The tree was rooted to Neostagonospora carici CBS 135092 and Neostagonospora elegiae CBS 135101. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers of LSU are listed in Fig. 28, and of the others loci are indicated in Table 7, Table 9. T indicates ex-type strains. TreeBASE: S23834.
Fig. 40
Fig. 40
Parastagonospora novozelandica (ex-type CPC 29613). A–C. Conidiogenous cells. D. Conidia. Scale bars = 10 μm.
Fig. 41
Fig. 41
Parastagonospora phragmitis (ex-type CPC 32075). A, B. Conidiogenous cells. C, D. Conidia. Scale bars = 10 μm.
Fig. 42
Fig. 42
Phaeosphaeriopsis spp. A. Symptomatic leaves of Agapanthus precox caused by Phaeosphaeriopsis agapanthi. B. Asci and ascospores of Phaeosphaeriopsis agavacearum (ex-type CBS 142110). C–P. Asexual morph. C, D. Conidiomata sporulating on PNA and OA, respectively, of Phaeosphaeriopsis agapanthi (ex-type CBS 141287). E. Conidiomata sporulating on OA of Phaeosphaeriopsis agavacearum (ex-type CBS 142110). F. Conidioma of Phaeosphaeriopsis agavacearum (ex-type CBS 142110). G–L. Conidiogenous cells giving rise to conidia. G, H.Phaeosphaeriopsis agapanthi (ex-type CBS 141287). I–L.Phaeosphaeriopsis glaucopunctata (CBS 653.86). M–O. Conidia. M.Phaeosphaeriopsis agapanthi (ex-type CBS 141287). N.Phaeosphaeriopsis agavacearum (ex-type CBS 142110). O.Phaeosphaeriopsis glaucopunctata (CBS 653.86). P. Chlamydospores of Phaeosphaeriopsis agavacearum (ex-type CBS 142110). Scale bars: F = 100 μm; others = 10 μm; I applies to I–L. Pictures A, C, D, G, H, M taken from Crous et al. (2016b); B, E, F, N, P from Crous et al. (2016a); I–L, O from Quaedvlieg et al. (2013).
Fig. 43
Fig. 43
RAxML phylogram obtained from the combined ITS (587 bp), LSU (849 bp), rpb2 (838 bp), tef1 (601 bp) and tub2 (519 bp) sequence alignment of all accepted species of Phaeosphaeriopsis. The tree was rooted to Neostagonospora caricis CBS 135092 and Neostagonospora elegiae CBS 135101. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers of LSU are listed in Fig. 28, and of the other loci in Tables 7 and . T and ET indicate ex-type and ex-epitype strains, respectively. TreeBASE: S23834.
Fig. 44
Fig. 44
Phaeosphaeriopsis aloes (ex-type CBS 145367). A. Conidiomata sporulating on MEA. B, C. Conidiogenous cells. D. Conidia. Scale bars: A = 180 μm; all others = 10 μm.
Fig. 45
Fig. 45
Phaeosphaeriopsis aloicola (ex-type CBS 145368). A. Ascomata sporulating on SNA. B. Asci. C. Pseudoparaphyses. D. Ascospores. Scale bars: A = 200 μm; all others = 10 μm.
Fig. 46
Fig. 46
Phaeosphaeriopsis grevilleae (ex-type CBS 145369). A. Conidiomata sporulating on PDA. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 μm.
Fig. 47
Fig. 47
Phaeosphaeriopsis pseudoagavacearum (ex-type CBS 145370). A. Conidiomata sporulating on MEA. B, C. Conidiogenous cells. D. Conidia. Scale bars = 10 μm.
Fig. 48
Fig. 48
Pleiocarpon strelitziae (ex-type CBS 142251). A–F. Disease symptoms. A, B. Wilting and dying Strelitzia reginae plants in the nursery. C–F. Basal rot and wilting of plant induced during the pathogenicity test. G–L. Asexual morph. G, H. Simple conidiophores. I, J. Sporodochia. K. Microconidia. L. Macroconidia. Scale bars: 10 μm; G applies to G–L. Pictures taken from Aiello et al. (2017).
Fig. 49
Fig. 49
Pleiocarpon livistonae (ex-type CBS 145030). A. Sporodochium on SNA. B. Conidiophores with conidiogenous cells. C. Conidia. D. Chlamydospores. Scale bars = 10 μm.
Fig. 50
Fig. 50
Pyrenophora spp. A–D. Sexual morph. A, B. Sterile ascomata of Pyrenophora campanulata (CBS 127927). C. Protoascomata of Pyrenophora erythrospila on PDA (CBS 312.69). D. Protoascoma of Pyrenophora erythrospila (CBS 108941). E–K. Asexual morph. E–H. Conidiophores. E.Pyrenophora fugax (CBS 509.77). F.Pyrenophora novozelandica (CBS 127934). G.Pyrenophora erythrospila (CBS 312.69). H.Pyrenophora fugax (CBS 509.77). I, J. Conidia. I.Pyrenophora erythrospila (CBS 312.69). J. Pyrenophora fugax (CBS 509.77). K. Chlamydospores of Pyrenophora tetrarrhenae (CBS 127924). Scale bars: A = 50 μm; D = 20 μm; G–K = 10 μm.
Fig. 51
Fig. 51
RAxML phylogram obtained from the combined ITS (788 bp), LSU (862 bp), gapdh (694 bp) and tef1 (860 bp) sequences of all the accepted species of Pyrenophora. Bipolaris panici-miliacei CBS 199.29 and Bipolaris yamadae CBS 202.29 were used as outgroup. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores ≥ 0.95 are shown in the nodes. GenBank accession numbers were indicated in Table 12 and Manamgoda et al. (2014). A, ET, LT, SynT and T indicate authentic, ex-epitype, ex-lectotype, ex-syntype and ex-type strains, respectively. TreeBASE: S23834.
Fig. 52
Fig. 52
Pyrenophora avenicola (ex-type CBS 307.84). A, B. Conidiophores and conidia. C–I. Conidia. Scale bars: A, B = 10 μm; C–I = 5 μm; C applies to C–I.
Fig. 53
Fig. 53
Pyrenophora cynosuri (ex-type CBS 127918). A–C. Conidiophores and conidia. D. Conidium forming secondary conidium. E–M. Conidia. Scale bars: 10 μm; E applies to E–M.
Fig. 54
Fig. 54
Pyrenophora nisikadoi (CBS 119213). A, B. Conidiophores and conidia. C. Chlamydospores. D–K. Conidia. Scale bars: A, B = 10 μm; C = 20 μm; D = 5 μm; D applies to D–K.
Fig. 55
Fig. 55
Pyrenophora novozelandica (ex-type CBS 127934). A–D. Conidiophores and conidia. E–M. Conidia. Scale bars: A–D = 10 μm; E = 5 μm; E applies to E–M.
Fig. 56
Fig. 56
Pyrenophora pseudoerythrospila (ex-type CBS 127931). A. Protoascomata on OA. B, C. Protoascomata. Scale bars = 10 μm.
Fig. 57
Fig. 57
Pyrenophora sieglingiae (ex-type CBS 127930). A–C. Sterile ascomata. D. Neck of ascoma. E, F. Conidiophores and conidia. G–O. Conidia. Scale bars: C = 100 μm; D–F = 20 μm; G = 10 μm; G applies to G–O.
Fig. 58
Fig. 58
Pyenophora variabilis (ex-type CBS 127920). A–C. Conidiophores and conidia. D–N. Conidia. Scale bars = 10 μm; C applies to A–C; N applies to D–N.
Fig. 59
Fig. 59
Ramichloridium spp. A.Ramichloridium luteum on apple. B. Sporulating colonies of Ramichloridium luteum (ex-type CBS 132088) on PDA. C–G. Macronematous conidiophores with sympodially proliferating conidiogenous cells, which give rise to a conidium-bearing rachis with crowded and prominent scars. C.Ramichloridium apiculatum (ex-type CBS 156.59). D.Ramichloridium cucurbitae (ex-type CBS 132087). E, F.Ramichloridium luteum (ex-type CBS 132088). G.Ramichloridium punctatum (ex-type CBS 132090). H, I. Scanning electron micrographs of Ramichloridium luteum (ex-type CBS 132088) showing sympodial proliferation with scars on conidiogenous cells. J, K. Conidiophores reduced to conidiogenous cells. J.Ramichloridium cucurbitae (ex-type CBS 132087). K.Ramichloridium luteum (ex-type CBS 132088). L, M. Conidia. L.Ramichloridium apiculatum (ex-type CBS 156.59). M.Ramichloridium punctatum (ex-type CBS 132090). Scale bars: H = 2 μm; I = 1 μm; all others = 10 μm. Pictures C, L taken from Li et al. (2012); all others from Arzanlou et al. (2007).
Fig. 60
Fig. 60
RAxML phylogram obtained from the combined ITS (594 bp), LSU (761 bp), rpb2 (819 bp) and tef1 (470 bp) sequence alignment of all accepted species of Ramichloridium and related taxa. The tree was rooted to Parapenidiella tasmaniensis CBS 124991 and Stenella araguata CBS 105.75. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers are listed in Table 13, Li et al., 2012, Videira et al., 2017 and Chen & Kirschner (2018). T and NT indicate ex-type and ex-neotype strains, respectively. TreeBASE: S23834.
Fig. 61
Fig. 61
Seifertia azalae. A, B. Disease symptoms caused on Rhododendron. C–G. Synnemata. H, I. Conidiogenous cells and conidia. J, K. Conidia. Scale bars: F = 100 μm; G = 50 μm; H–K = 10 μm.
Fig. 62
Fig. 62
Seiridium spp. A–F. Disease symptoms on Cupressaceae hosts. A–C. Flagging of branches. D. Trunk canker with gummosis. E. Branch canker. F. Conidiomata. G–I.Seiridium pezizoides (CBS 145115). G, H. Acervuli on Cupressaceae sp. I. Conidial masses on artificial media. J, K. Conidiophores and conidiogenous cells. J.Seiridium neocupressi (CBS 142625). K.Seiridium eucalypti (CBS 343.97). L–R. Conidia. L.Seiridium cardinale (CBS 909.85). M.Seiridium spyridicola (CBS 142628). N.Seiridium unicorne (CBS 538.82). O.Seiridium neocupressi (CBS 142625). P.Seiridium eucalypti (CBS 343.97). Q.Seiridium kartense (CBS 142629). R.Seiridium pezizoides (CBS 145115). S–U.Seiridium cupressi (IMI 40096). S, T. Ascomata. U. Ascospores. Scale bars: F = 2 mm; G, H = 50 μm; J–U = 10 μm. Pictures J–U taken from Bonthond et al. (2018).
Fig. 63
Fig. 63
A–D. Boxplots of conidial measurement data in μm from S. unicorne and other Cupressaceae pathogens. The boxes show the lower and upper quantiles and whiskers extend to 1.5x the interquartile range. Except for the new epitype all measurements are adapted from Bonthond et al. (2018). The ex-epitype strain (CBS 143871), holotype (IMI 5816) and reference strain (CBS 538.82) of S. unicorne are highlighted in blue. E. The best Maximum Likelihood (ML) tree based on four loci (ITS: 616 bp, rpb2: 802 bp, tef1: 633 bp, tub2: 809 bp). Nodes are labelled with ML bootstrap values (BS > 49 %)/Bayesian posterior probabilities (PP > 0.49) using the same model selection, settings and software as in Bonthond et al. (2018). Strains are displayed by number, host and country of collection. GenBank accession numbers are listed in Bonthond et al. (2018) and in Table 15. T, ET, GT and R indicate ex-type, ex-epitype, ex-generic type and reference strains, respectively. TreeBASE: S23390.
Fig. 64
Fig. 64
Seiridium pezizoides (CBS 145115). A–D. Colony morphology in 90-mm-diam Petri dishes after 10 d at 22 °C on MEA, SNA, PDA and CMA, respectively. E–K. Conidiomata on Vitis vinifera. L, M. Conidiophores. N. Conidia. Scale bars: E = 1 mm; F–K = 100 μm; L–N = 10 μm.
Fig. 65
Fig. 65
Seiridium unicorne (ex-epitype CBS 143871). A–D. Colony morphology in 90-mm-diam Petri dishes after 10 d at 22 °C on MEA, SNA, PDA and CMA, respectively. E. Symptoms on naturally infected host. F, G. Conidiomata on artificially infected Cupressaceae sp. H. Sporulation on PDA. I. Conidioma on SNA partially immersed in agar. J–O. Conidiophores and conidia. P. Conidia. Scale bars: F–H = 100 μm; I–P = 10 μm.
Fig. 66
Fig. 66
Septoriella spp. A. Conidiomata on OA of Septoriella hirta (ex-neotype CBS 536.77). B. Conidiomata in vivo of Septoriella phragmitis (ex-epitype CBS 140065). C. Conidial cirrhus of Septoriella phragmitis (ex-epitype CBS 140065). D. Conidioma of Septoriella hirta (ex-neotype CBS 536.77). E, F. Section through conidiomata of Septoriella hirta (ex-neotype CBS 536.77). G–I. Conidiogenous cells. G.Septoriella oudemansii (ex-type CBS 138012). H, I.Septoriella phragmitis (ex-epitype CBS 140065). J. Developing conidia of Septoriella hirta (ex-neotype CBS 536.77). K–O. Conidia. K.Septoriella hirta (ex-neotype CBS 536.77). L.Septoriella oudemansii (ex-type CBS 138012). M.Septoriella poae (ex-type CBS 136766). N, O.Septoriella phragmitis (ex-epitype CBS 140065). Scale bars: D, E = 100 μm; F = 50 μm; all others = 10 μm. Pictures A–F, H–K, N, O taken from Crous et al., 2015a, Crous et al., 2015b, Crous et al., 2015c; G, L from Crous et al. (2014b).
Fig. 67
Fig. 67
RAxML phylogram obtained from the combined ITS (580 bp), LSU (849 bp) and rpb2 (1083 bp) sequence alignment of all accepted species of Septoriella. The tree was rooted to Neostagonospora caricis CBS 135092 and Neostagonospora elegiae CBS 135101. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers of LSU are listed in Fig. 28, and of the other loci in Tables 7 and 16. T, ET, HT and IsoT indicate ex-type, ex-epitype, holotype and ex-isotype strains, respectively. TreeBASE: S23834.
Fig. 68
Fig. 68
Septoriella germanica (ex-type CBS 145372). A. Conidiomata sporulating on PNA. B, C. Conidiogenous cells. D. Conidia with mucoid caps. Scale bars: A = 200 μm; all others = 10 μm.
Fig. 69
Fig. 69
Septoriella hollandica (ex-type CBS 145374). A. Ascomata sporulating on PNA. B, C. Asci. D. Ascospores. Scale bars = 10 μm.
Fig. 70
Fig. 70
Septoriella pseudophragmitis (ex-type CPC 24166). A. Conidiomata sporulating on MEA. B, C. Conidiogenous cells. D. Conidia. Scale bars: A = 250 μm; all others = 10 μm.
Fig. 71
Fig. 71
Setophoma spp. A, B. Conidioma forming in culture. A.Setophoma chromolaenae (ex-type CBS 135105). B.Setophoma vernoniae (ex-type CBS 137988). C–E. Conidiomata with setae of Setophoma chromolaenae (ex-type CBS 135105). F–H. Conidiogenous cells. F, G.Setophoma chromolaenae (ex-type CBS 135105). H.Setophoma vernoniae (ex-type CBS 137988). I, J. Conidia. I.Setophoma chromolaenae (ex-type CBS 135105). J.Setophoma vernoniae (ex-type CBS 137988). Scale bars: C–E = 20 μm; all others = 10 μm; F applies to F and G.
Fig. 72
Fig. 72
RAxML phylogram obtained from the combined ITS (589 bp), LSU (835 bp), tef1 (788 bp) and tub2 (532 bp) sequence alignment of all accepted species of Setophoma. The tree was rooted to Neostagonospora caricis CBS 135092 and Neostagonospora elegiae CBS 135101. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers of LSU are listed in Fig. 28, and of the other loci in Table 7, Table 17 and 18. T, ET and LT indicate ex-type strains, ex-epitype and ex-lectotype, respectively. TreeBASE: S23834.
Fig. 73
Fig. 73
Setophoma pseudosacchari (ex-type CBS 145373). A. Ascomata sporulating on OA. B. Asci with ascospores. C. Conidia. Scale bars: A = 300 μm; all others = 10 μm.
Fig. 74
Fig. 74
Wingfieldomyces cyperi (ex-type CBS 141450). A. Symptomatic leaf of Cyperus sphaerocephala. B–D. Asci. E. Pseudoparaphyses. F–I. Ascospores. Scale bars: 10 μm; F applies to F–I. Pictures B, C, E–I taken from Crous et al. (2016b).
Fig. 75
Fig. 75
Stagonosporopsis spp. A, B. Disease symptoms of Stagonosporopsis tanaceti (ex-type CBS 131484). A. Leaf necrosis. B. Drooping flower heads. C–G. Sexual morph of Stagonosporopsis inoxydabilis (ex-type CBS 425.90). C. Close-up of ascoma with darkened ostiolar area. D, E. Stipitate, bitunicate asci. F, G. Ascospores (arrows denote sheath). H–T. Asexual morph. H, I. Colony sporulating on OA. H.Stagonosporopsis chrysanthemi (CBS 500.63). I.Stagonosporopsis tanaceti (ex-type CBS 131484). J. Close-up of pycnidial conidiomata of Stagonosporopsis tanaceti (ex-type CBS 131484). K. Close-up of darkened ostiolar area of Stagonosporopsis chrysanthemi (CBS 500.63). L–Q. Conidiogenous cells. L–N.Stagonosporopsis chrysanthemi (CBS 500.63). O–Q.Stagonosporopsis tanaceti (ex-type CBS 131484). R, S. Conidia. R.Stagonosporopsis chrysanthemi (CBS 500.63). S.Stagonosporopsis tanaceti (ex-type CBS 131484). T. Chain of chlamydospores of Stagonosporopsis tanaceti (ex-type CBS 131484). Scale bars: C = 35 μm; J = 150 μm; all others = 10 μm; D applies to D and E; L applies to L–N; O applies to O–Q. Pictures taken from Vaghefi et al. (2012).
Fig. 76
Fig. 76
The majority rule consensus phylogram of Stagonosporopsis spp. inferred from the concatenated LSU (876 bp), ITS (459 bp), tub2 (299 bp) and rpb2 (596 bp) sequence alignment using Bayesian Inference. The tree is rooted to Boeremia exigua var. exigua CBS 431.74. Bootstrap support values > 75 % and PP values > 0.90 are shown above or below the branches. T,ET,IsoT and NT indicate ex-type, ex-epitype, ex-isotype and ex-neotype strains, respectively. Genbank accession numbers are indicated in Table 19, Aveskamp et al. (2010) and Vaghefi et al. (2012). TreeBASE: S23800.
Fig. 77
Fig. 77
Stemphylium spp. A. Disease symptoms caused by Stemphylium vesicarium (BRIP 65181) on pyrethrum leaves. B, C. Pseudothecial ascomata of Stemphylium vesicarium (BRIP 65181) on pyrethrum flower stems in vivo and in vitro respectively. D–H. Conidia of Stemphylium spp. D, H.Stemphylium vesicarium (BRIP 65181). E.Stemphylium truncatulae (holotype BRIP 14850). F, G.Stemphylium waikerieanum (ex-type VPRI 21969). I–K. Conidiophores of Stemphylium spp. I. 1-branched conidiophore of Stemphylium vesicarium (BRIP 65181). J. Simple conidiophore of Stemphylium truncatuale (holotype BRIP 14850). K. Branched and immature conidiophores of Stemphylium waikerieanum (ex-type VPRI 21969). L–N. Sexual morphs. L, M. Asci and ascospores of Stemphylium vesicarium isolated from the dead flower stems of pyrethrum. N. Immature pseudothecial ascomata of Stemphylium truncatulae on SNA after 1 wk. Scale bars: D–K = 20 μm; L, M = 100 μm. Pictures A–D, H, I, M taken from Moslemi et al. (2017).
Fig. 78
Fig. 78
Bayesian phylogenetic tree inferred from ITS (565 bp), gapdh (613 bp) and cmdA (863) using partitioned analysis with N92+G+I substituition model for ITS and gapdh and GTR+G+I for cmdA. Highest log likelihood -34098.05. The analysis involved 122 nucleotide sequences including 98 sequences obtained from GenBank and 24 sequences obtained in the present study. Scale bar indicates expected changes per site. The tree was rooted to Alternaria alternata (GV14 634a1). The novel species described in this study are shown in bold. Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers are indicated in Table 20. T, ET, HT and NT indicate ex-type, ex-epitype, ex-holotype and ex-neotype strains, respectively. TreeBASE:S23794.
Fig. 78
Fig. 78
Bayesian phylogenetic tree inferred from ITS (565 bp), gapdh (613 bp) and cmdA (863) using partitioned analysis with N92+G+I substituition model for ITS and gapdh and GTR+G+I for cmdA. Highest log likelihood -34098.05. The analysis involved 122 nucleotide sequences including 98 sequences obtained from GenBank and 24 sequences obtained in the present study. Scale bar indicates expected changes per site. The tree was rooted to Alternaria alternata (GV14 634a1). The novel species described in this study are shown in bold. Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers are indicated in Table 20. T, ET, HT and NT indicate ex-type, ex-epitype, ex-holotype and ex-neotype strains, respectively. TreeBASE:S23794.
Fig. 79
Fig. 79
Stemphylium rombundicum (ex-type BRIP 27486). A–J. Conidia. K–S. Verrucose conidiogenous cells and straight and simple conidiophores with conidia attached. Scale bars: A–N, P = 20 μm; others 100 μm.
Fig. 80
Fig. 80
Stemphylium truncatulae (ex-type BRIP 14850). A–H. Asexual morph. A–D. Conidia on SNA. E–H. Straight and simple or multibranched conidiophores and conidiogenous cells. I–J. Sexual morph. I. Immature pseudothecium. J. Ascomatal wall. Scale bars: I = 100 μm; others 20 μm.
Fig. 81
Fig. 81
Stemphylium waikerieanum (ex-type VPRI 21969). A. Dried leaf of Allium cepa showing leaf lesions caused by the pathogen. B. Dried type culture. C. Revived colony after 1 wk on PDA. D–K. Asexual morph. D–H. Simple or 1-branched conidiophores on PDA and SNA. I–K. Phaeodictyospores. L–N. Sexual morph. L, M. Immature ascomata on SNA after 1 wk. N. Ascomatal wall. Scale bars: N = 100 μm; others 20 μm.
Fig. 82
Fig. 82
Tubakia spp. A–E. Disease symptoms. A.Tubakia californica on Tanoak tree (Notholithocarpus densiflorus). B.Tubakia californica on California black oak (Quercus kelloggii). C.Tubakia sierrafriensis (holotype CFNL 2944) on Quercus eduardi. D.Tubakia japonica (epitype NBRC H-11611) on Castanea crenata. E.Tubakia melnikiana (holotype HAL 3179 F) causing necrotic leaf lesion. F–N. Asexual morph. F. Scutellum of Tubakia paradryinoides (holotype TFM:FPH 3923). G. Central columella of Tubakia oblongispora (holotype NBRC H-11881). H–J. Conidiophores. H.Tubakia japonica (epitype NBRC H-11611). I.Tubakia oblongispora (holotype NBRC H-11881). J.Tubakia paradryinoides (holotype TFM:FPH 3923). K–M. Conidia. K.Tubakia dryinoides (holotype NBRC H-11618). L.Tubakia oblongispora (holotype NBRC H-11881). M.Tubakia paradryinoides (holotype TFM:FPH 3923). N. Microconidia of Tubakia dryinoides (holotype NBRC H-11618). Scale bars: 10 μm. Pictures taken from Braun et al. (2018).
Fig. 83
Fig. 83
RAxML phylogram obtained from the combined ITS (534 bp), LSU (741 bp) and rpb2 (739 bp) sequence alignment of all accepted species of Zasmidium. The tree was rooted to Anellosympodiella juniperi CBS 137992 and Neopenidiella nectandrae CBS 734.78. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers are listed in Table 22 and Videiraet al. (2017). T, ET, HT and NT indicate ex-type, ex-epitype, holotype and ex-neootype strains, respectively. TreeBASE: S23834.
Fig. 84
Fig. 84
Zasmidium spp. A–C. Disease symptoms caused by Zasmidium cyatheae (ex-type CPC 24725). A, B. Frond spots on Cyathea delgadii. C. Erumpent subcuticular ascomata, fruiting epiphyllous. D–F. Sexual morph of Zasmidium cyatheae (ex-type CPC 24725). D. Ascoma. E. Asci. F. Ascospores. G–R. Asexual morph. G–L. Conidiophores. G. Zasmidium biverticillatum (CBS 335.36). H. Zasmidium citri-griseum (ex-epitype CBS 139467). I. Zasmidium fructigenum (ex-type CBS 139626). J. Zasmidium indonesianum (ex-type CBS 139627). K. Zasmidium musigenum (ex-type CBS 365.36). L. Zasmidium strelitziae (ex-type CBS 121711). M–Q. Conidiophores. M. Zasmidium biverticillatum (CBS 335.36). N. Zasmidium biverticillatum (CBS 335.36). O. Zasmidium citri-griseum (ex-epitype CBS 139467). P. Zasmidium fructicola (ex-type CBS 139625). Q. Zasmidium musigenum (ex-type CBS 365.36). R. Primary and secondary conidia of Zasmidium cellare (ex-neotype CBS 146.36). Scale bars: 10 μm. Pictures A–F taken from Guatimosim et al. (2016); G, K–N, Q, R from Arzanlou et al. (2007); H–J, O, P from Huang et al. (2015).
Fig. 85
Fig. 85
Zasmidium thailandicum (ex-type CBS 145027). A–C. Conidiophores sporulating on SNA. D–F. Conidiogenous cells with apical rachis giving rise to conidia. Scale bars = 10 μm.

References

    1. Abdullah S., Sehgal S.K., Ali S. Characterization of Pyrenophora tritici-repentis (tan spot of wheat) races in Baltic States and Romania. The Plant Pathology Journal. 2017;33:133–139. - PMC - PubMed
    1. Adler A., Yaniv I., Samra Z. Exserohilum: an emerging human pathogen. European Journal of Clinical Microbiology and Infectious Diseases. 2006;25:247–253. - PubMed
    1. Ahmed S.A., Hofmüller W., Seibold M. Tintelnotia, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses. 2017;60:244–253. - PubMed
    1. Aiello D., Polizzi G., Crous P.W. Pleiocarpon gen. nov. and a new species of Ilyonectria causing basal rot of Strelitzia reginae in Italy. IMA Fungus. 2017;8:65–76. - PMC - PubMed
    1. Amaradasa B.S., Madrid H., Groenewald J.Z. Porocercospora seminalis gen. et comb. nov. the causal organism of buffalo grass false smut. Mycologia. 2014;106:77–85. - PubMed

LinkOut - more resources