Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jul 1;48(13):3648-51.

Modulation of 6-thioguanine activity by guanine in human promyelocytic leukemia HL-60 cells

Affiliations
  • PMID: 3163939

Modulation of 6-thioguanine activity by guanine in human promyelocytic leukemia HL-60 cells

H W Cheng et al. Cancer Res. .

Abstract

The effects of guanine coadministration on the metabolism and biological activity of 6-thioguanine (6-TG) were studied in human promyelocytic leukemia cells (HL-60). Cell growth, cytotoxicity (cloning assay), and cell differentiation were measured, along with nucleotide metabolism. Guanine was efficiently salvaged by HL-60 cells; at 200 microM, guanine suppressed the formation of 6-TG mononucleotides and abolished 6-TG incorporation into nucleic acids. Similarly, guanine antagonized 6-TG cytotoxicity in a dose dependent fashion. Furthermore, guanine (200 microM) fully suppressed the 6-TG (10 microM) induced HL-60 cell differentiation, which suggests that cell differentiation at pharmacological 6-TG concentrations is dependent on the anabolism of the drug to active nucleotides. 6-TG given alone reduced GTP levels and DNA synthesis rates in HL-60 cells, while a major intracellular 6-TG metabolite, 6-thioguanosine 5'-monophosphate, accumulated to high levels (approximately 100 microM). It is suggested that accumulation of 6-thioguanosine 5'-monophosphate and a resultant partial block of the de novo biosynthesis of guanine nucleotides is responsible for 6-TG induced cell differentiation in HL-60 cells.

PubMed Disclaimer

Publication types

LinkOut - more resources