Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 22;16(1):28.
doi: 10.1186/s12977-019-0489-7.

Characterization of resistance to a potent D-peptide HIV entry inhibitor

Affiliations

Characterization of resistance to a potent D-peptide HIV entry inhibitor

Amanda R Smith et al. Retrovirology. .

Abstract

Background: PIE12-trimer is a highly potent D-peptide HIV-1 entry inhibitor that broadly targets group M isolates. It specifically binds the three identical conserved hydrophobic pockets at the base of the gp41 N-trimer with sub-femtomolar affinity. This extremely high affinity for the transiently exposed gp41 trimer provides a reserve of binding energy (resistance capacitor) to prevent the viral resistance pathway of stepwise accumulation of modest affinity-disrupting mutations. Such modest mutations would not affect PIE12-trimer potency and therefore not confer a selective advantage. Viral passaging in the presence of escalating PIE12-trimer concentrations ultimately selected for PIE12-trimer resistant populations, but required an extremely extended timeframe (> 1 year) in comparison to other entry inhibitors. Eventually, HIV developed resistance to PIE12-trimer by mutating Q577 in the gp41 pocket.

Results: Using deep sequence analysis, we identified three mutations at Q577 (R, N and K) in our two PIE12-trimer resistant pools. Each point mutant is capable of conferring the majority of PIE12-trimer resistance seen in the polyclonal pools. Surface plasmon resonance studies demonstrated substantial affinity loss between PIE12-trimer and the Q577R-mutated gp41 pocket. A high-resolution X-ray crystal structure of PIE12 bound to the Q577R pocket revealed the loss of two hydrogen bonds, the repositioning of neighboring residues, and a small decrease in buried surface area. The Q577 mutations in an NL4-3 backbone decreased viral growth rates. Fitness was ultimately rescued in resistant viral pools by a suite of compensatory mutations in gp120 and gp41, of which we identified seven candidates from our sequencing data.

Conclusions: These data show that PIE12-trimer exhibits a high barrier to resistance, as extended passaging was required to develop resistant virus with normal growth rates. The primary resistance mutation, Q577R/N/K, found in the conserved gp41 pocket, substantially decreases inhibitor affinity but also damages viral fitness, and candidate compensatory mutations in gp160 have been identified.

Keywords: Compensatory mutation; D-peptide; HIV entry inhibition; Hydrophobic pocket; PIE12-trimer; Viral fitness; Viral passaging; Viral resistance mutation; gp120; gp41.

PubMed Disclaimer

Conflict of interest statement

The authors declare the following competing financial interest(s): MSK and DME are consultants and equity holders in Navigen, Inc., which is commercializing d-peptide inhibitors of HIV entry.

Figures

Fig. 1
Fig. 1
Representative inhibitory curves of replication-competent NL4-3 (WT) and PIE12-trimer resistant viruses. The polyclonal viral pools (W1 and W2) show slightly enhanced resistance compared to clonal virus expressing Env with Q577 point mutations. Representative normalized data are shown from a single assay with triplicate measurements (error bars show standard error). IC50 values of this representative data set are indicated in parentheses
Fig. 2
Fig. 2
Protein interaction analysis of Q577R mutation. SPR equilibrium binding data (in triplicate) for interaction between immobilized IZN36 (WT or Q577R) and PIE12 monomer. The calculated KD values are 0.031 µM for WT and 2.0 µM for Q577R
Fig. 3
Fig. 3
Crystal structures of PIE12/IQN17 (Q577R) (PDB: 6PSA) and PIE12/IQN17 (WT PDB:3L37). Stereoview of the overlay of crystal structures of PIE12 binding to the WT (yellow) and a mutant (Q577R, turquoise) pocket showing the disruption of hydrogen bonding interactions mediated by Q577
Fig. 4
Fig. 4
Viral Growth Assays. Comparison of growth kinetics between control clonal NL4-3 (WT), Q577 mutant viruses (R, N and K), and resistant polyclonal viral pools (W1 and W2). Viral titers were determined by qRT-PCR and compared to a standard curve of known HIV-1 titers (based on p24 antigen levels). Each culture was inoculated with virus containing 1 ng p24 (average of biological duplicate assays shown with s.d. error bars)
Fig. 5
Fig. 5
Prominent mutations in gp120 and gp41 observed in PIE12-trimer resistant viruses. The primary structure of the Env precursor, gp160, is depicted, with HXB2 (UniProtKB P04578) numbering. The gp41 N- and C-peptide regions are numbered according to [45]. gp160 is processed into two non-covalently associated subunits, the surface gp120 (orange) and the membrane-spanning gp41 (blue). gp120 comprises five constant domains (C1–C5) and five variable domains (V1-V5). gp41 contains a fusion peptide (FP), an N-peptide region that forms the N-trimer coiled coil (N), a C-peptide region (C) that together with the N-trimer forms a 6-helix bundle in the post-fusion state, a membrane-proximal external region (MPER), a transmembrane domain (TM), and a cytoplasmic tail (CT). The primary resistance mutations (Q577R/N/K) are represented in red, and candidate resistance and fitness compensation mutations are shown in black. Mutations denoted by * are within the Rev Response Element (RRE)

References

    1. Fact sheet—Latest statistics on the status of the AIDS epidemic. http://www.unaids.org/en/resources/fact-sheet. Accessed 30 Apr 2018.
    1. Menendez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 2010;85:210–231. doi: 10.1016/j.antiviral.2009.07.006. - DOI - PubMed
    1. Clavel F, Hance AJ. HIV drug resistance. N Engl J Med. 2004;350:1023–1035. doi: 10.1056/NEJMra025195. - DOI - PubMed
    1. Rambaut A, Posada D, Crandall KA, Holmes EC. The causes and consequences of HIV evolution. Nat Rev Genet. 2004;5:52–61. doi: 10.1038/nrg1246. - DOI - PubMed
    1. Venkatesan S, Rosenthal R, Kanu N, McGranahan N, Bartek J, Quezada SA, Hare J, Harris RS, Swanton C. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann Oncol. 2018;29:563–572. doi: 10.1093/annonc/mdy003. - DOI - PMC - PubMed

Publication types

LinkOut - more resources