Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Mar;35(3):446-459.
doi: 10.1002/jbmr.3901. Epub 2019 Nov 19.

HR-pQCT Measures of Bone Microarchitecture Predict Fracture: Systematic Review and Meta-Analysis

Affiliations
Free article
Meta-Analysis

HR-pQCT Measures of Bone Microarchitecture Predict Fracture: Systematic Review and Meta-Analysis

Nicholas Mikolajewicz et al. J Bone Miner Res. 2020 Mar.
Free article

Abstract

High-resolution peripheral quantitative computed tomography (HR-pQCT) is a noninvasive imaging modality for assessing volumetric bone mineral density (vBMD) and microarchitecture of cancellous and cortical bone. The objective was to (1) assess fracture-associated differences in HR-pQCT bone parameters; and (2) to determine if HR-pQCT is sufficiently precise to reliably detect these differences in individuals. We systematically identified 40 studies that used HR-pQCT (39/40 used XtremeCT scanners) to assess 1291 to 3253 and 3389 to 10,687 individuals with and without fractures, respectively, ranging in age from 10.9 to 84.7 years with no comorbid conditions. Parameters describing radial and tibial bone density, microarchitecture, and strength were extracted and percentage differences between fracture and control subjects were estimated using a random effects meta-analysis. An additional meta-analysis of short-term in vivo reproducibility of bone parameters assessed by XtremeCT was conducted to determine whether fracture-associated differences exceeded the least significant change (LSC) required to discern measured differences from precision error. Radial and tibial HR-pQCT parameters, including failure load, were significantly altered in fracture subjects, with differences ranging from -2.6% (95% confidence interval [CI] -3.4 to -1.9) in radial cortical vBMD to -12.6% (95% CI -15.0 to -10.3) in radial trabecular vBMD. Fracture-associated differences reported by prospective studies were consistent with those from retrospective studies, indicating that HR-pQCT can predict incident fracture. Assessment of study quality, heterogeneity, and publication biases verified the validity of these findings. Finally, we demonstrated that fracture-associated deficits in total and trabecular vBMD and certain tibial cortical parameters can be reliably discerned from HR-pQCT-related precision error and can be used to detect fracture-associated differences in individual patients. Although differences in other HR-pQCT measures, including failure load, were significantly associated with fracture, improved reproducibility is needed to ensure reliable individual cross-sectional screening and longitudinal monitoring. In conclusion, our study supports the use of HR-pQCT in clinical fracture prediction. © 2019 American Society for Bone and Mineral Research.

Keywords: ANALYSIS/QUANTITATION OF BONE; BONE QCT; CLINICAL TRIALS; FRACTURE RISK ASSESSMENT; STATISTICAL METHODS.

PubMed Disclaimer

References

    1. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ III, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467-75.
    1. Siris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108-12.
    1. Burt LA, Manske SL, Hanley DA, Boyd SK. Lower bone density, impaired microarchitecture, and strength predict future fragility fracture in postmenopausal women: 5-year follow-up of the Calgary CaMos cohort. J Bone Miner Res. 2018;33(4):589-97.
    1. Sornay-Rendu E, Boutroy S, Duboeuf F, Chapurlat RD. Bone microarchitecture assessed by HR-pQCT as predictor of fracture risk in postmenopausal women: the OFELY study. J Bone Miner Res. 2017;32(6):1243-51.
    1. Szulc P, Boutroy S, Chapurlat R. Prediction of fractures in men using bone microarchitectural parameters assessed by high-resolution peripheral quantitative computed tomography-the prospective STRAMBO study. J Bone Miner Res. 2018;33(8):1470-9.

Publication types