Quantum supremacy using a programmable superconducting processor
- PMID: 31645734
- DOI: 10.1038/s41586-019-1666-5
Quantum supremacy using a programmable superconducting processor
Abstract
The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2-7 to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy8-14 for this specific computational task, heralding a much-anticipated computing paradigm.
Comment in
-
Quantum computing takes flight.Nature. 2019 Oct;574(7779):487-488. doi: 10.1038/d41586-019-03173-4. Nature. 2019. PMID: 31645717 No abstract available.
-
A precarious milestone for quantum computing.Nature. 2019 Oct;574(7779):453-454. doi: 10.1038/d41586-019-03168-1. Nature. 2019. PMID: 31645738 No abstract available.
-
Hello quantum world! Google publishes landmark quantum supremacy claim.Nature. 2019 Oct;574(7779):461-462. doi: 10.1038/d41586-019-03213-z. Nature. 2019. PMID: 31645740 No abstract available.
-
Supremacy is for racists - use 'quantum advantage'.Nature. 2019 Dec;576(7786):213. doi: 10.1038/d41586-019-03781-0. Nature. 2019. PMID: 31822842 No abstract available.
-
Physicists in China challenge Google's 'quantum advantage'.Nature. 2020 Dec;588(7838):380. doi: 10.1038/d41586-020-03434-7. Nature. 2020. PMID: 33273711 No abstract available.
References
-
- Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). - DOI
-
- Devoret, M. H., Martinis, J. M. & Clarke, J. Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1908 (1985). - DOI
-
- Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of energy-level splitting between two macroscopic quantum states of charge coherently superposed by Josephson coupling. Phys. Rev. Lett. 79, 2328 (1997). - DOI
-
- Mooij, J. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999). - DOI
-
- Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources