Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 29;14(10):e0224484.
doi: 10.1371/journal.pone.0224484. eCollection 2019.

Transcript profile of skeletal muscle lipid metabolism genes affected by diet in a piglet model of low birth weight

Affiliations

Transcript profile of skeletal muscle lipid metabolism genes affected by diet in a piglet model of low birth weight

Quentin L Sciascia et al. PLoS One. .

Abstract

Dysregulated skeletal muscle metabolism (DSMM) is associated with increased inter- and intramuscular fat deposition in low birth weight (L) individuals. The mechanisms behind DSMM in L individuals are not completely understood but decreased muscle mass and shifts in lipid and carbohydrate utilisation may contribute. Previously, we observed lower fat oxidation in a porcine model of low birth weight. To elucidate the biological activities underpinning this difference microfluidic arrays were used to assess mRNA associated with lipid metabolism in longissimus dorsi (LD) and semitendinosus (ST) skeletal muscle samples from thirty-six female L and normal birth weight (N) pigs. Plasma samples were collected from a sub-population to measure metabolite concentrations. Following overnight fasting, skeletal muscle and plasma samples were collected and the association with birth weight, diet and age was assessed. Reduced dietary fat was associated with decreased LD intermuscular fat deposition and beta-oxidation associated mRNA, in both birth weight groups. Lipid uptake and intramuscular fat deposition associated mRNA was reduced in only L pigs. Abundance of ST mRNA associated with lipolysis, lipid synthesis and transport increased in both birth weight groups. Lipid uptake associated mRNA reduced in only L pigs. These changes were associated with decreased plasma L glucose and N triacylglycerol. Post-dietary fat reduction, LD mRNA associated with lipid synthesis and inter- and intramuscular fat deposition increased in L, whilst beta-oxidation associated mRNA remains elevated for longer in N. In the ST, mRNA associated with lipolysis and intramuscular fat deposition increased in both birth weight groups, however this increase was more significant in L pigs and associated with reduced beta-oxidation. Analysis of muscle lipid metabolism associated mRNA revealed that profile shifts are a consequence of birth weight. Whilst, many of the adaptions to diet and age appear to be similar in birth weight groups, the magnitude of response and individual changes underpin the previously observed lower fat oxidation in L pigs.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Similar articles

Cited by

References

    1. Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest. 2005;115(7):1699–702. Epub 2005/07/12. 10.1172/JCI25758 - DOI - PMC - PubMed
    1. Xiao X, Zhang ZX, Li WH, Feng K, Sun Q, Cohen HJ, et al. Low birth weight is associated with components of the metabolic syndrome. Metabolism. 2010;59(9):1282–6. Epub 2010/01/05. 10.1016/j.metabol.2009.12.001 - DOI - PMC - PubMed
    1. Williams PJ, Marten N, Wilson V, Litten-Brown JC, Corson AM, Clarke L, et al. Influence of birth weight on gene regulators of lipid metabolism and utilization in subcutaneous adipose tissue and skeletal muscle of neonatal pigs. Reproduction. 2009;138(3):609–17. Epub 2009/06/09. 10.1530/REP-08-0445 . - DOI - PubMed
    1. Rehfeldt C, Tuchscherer A, Hartung M, Kuhn G. A second look at the influence of birth weight on carcass and meat quality in pigs. Meat Sci. 2008;78(3):170–5. Epub 2008/03/01. 10.1016/j.meatsci.2007.05.029 . - DOI - PubMed
    1. Hausman GJ, Basu U, Du M, Fernyhough-Culver M, Dodson MV. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues. Adipocyte. 2014;3(4):242–55. Epub 2015/09/01. 10.4161/adip.28546 - DOI - PMC - PubMed

Publication types