Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 16;5(10):eaax0121.
doi: 10.1126/sciadv.aax0121. eCollection 2019 Oct.

A global synthesis reveals biodiversity-mediated benefits for crop production

Matteo Dainese  1   2 Emily A Martin  2 Marcelo A Aizen  3 Matthias Albrecht  4 Ignasi Bartomeus  5 Riccardo Bommarco  6 Luisa G Carvalheiro  7   8 Rebecca Chaplin-Kramer  9 Vesna Gagic  10 Lucas A Garibaldi  11 Jaboury Ghazoul  12 Heather Grab  13 Mattias Jonsson  6 Daniel S Karp  14 Christina M Kennedy  15 David Kleijn  16 Claire Kremen  17 Douglas A Landis  18 Deborah K Letourneau  19 Lorenzo Marini  20 Katja Poveda  13 Romina Rader  21 Henrik G Smith  22   23 Teja Tscharntke  24 Georg K S Andersson  22 Isabelle Badenhausser  25   26 Svenja Baensch  24   27 Antonio Diego M Bezerra  28 Felix J J A Bianchi  29 Virginie Boreux  12   30 Vincent Bretagnolle  31 Berta Caballero-Lopez  32 Pablo Cavigliasso  33 Aleksandar Ćetković  34 Natacha P Chacoff  35 Alice Classen  2 Sarah Cusser  36 Felipe D da Silva E Silva  37   38 G Arjen de Groot  39 Jan H Dudenhöffer  40 Johan Ekroos  22 Thijs Fijen  16 Pierre Franck  41 Breno M Freitas  28 Michael P D Garratt  42 Claudio Gratton  43 Juliana Hipólito  11   44 Andrea Holzschuh  2 Lauren Hunt  45 Aaron L Iverson  13 Shalene Jha  46 Tamar Keasar  47 Tania N Kim  48 Miriam Kishinevsky  49 Björn K Klatt  23   24 Alexandra-Maria Klein  30 Kristin M Krewenka  50 Smitha Krishnan  12   51   52 Ashley E Larsen  53 Claire Lavigne  41 Heidi Liere  54 Bea Maas  55 Rachel E Mallinger  56 Eliana Martinez Pachon  57 Alejandra Martínez-Salinas  58 Timothy D Meehan  59 Matthew G E Mitchell  60 Gonzalo A R Molina  61 Maike Nesper  12 Lovisa Nilsson  22 Megan E O'Rourke  62 Marcell K Peters  2 Milan Plećaš  34 Simon G Potts  43 Davi de L Ramos  63 Jay A Rosenheim  64 Maj Rundlöf  23 Adrien Rusch  65 Agustín Sáez  66 Jeroen Scheper  16   39 Matthias Schleuning  67 Julia M Schmack  68 Amber R Sciligo  69 Colleen Seymour  70 Dara A Stanley  71 Rebecca Stewart  22 Jane C Stout  72 Louis Sutter  4 Mayura B Takada  73 Hisatomo Taki  74 Giovanni Tamburini  30 Matthias Tschumi  4 Blandina F Viana  75 Catrin Westphal  27 Bryony K Willcox  21 Stephen D Wratten  76 Akira Yoshioka  77 Carlos Zaragoza-Trello  5 Wei Zhang  78 Yi Zou  79 Ingolf Steffan-Dewenter  2
Affiliations

A global synthesis reveals biodiversity-mediated benefits for crop production

Matteo Dainese et al. Sci Adv. .

Abstract

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Distribution of analyzed studies and effects of richness on ecosystem services provisioning.
(A) Map showing the size (number of crop fields sampled) and location of the 89 studies (further details of studies are given in table S1). (B) Global effect of pollinator richness on pollination (n = 821 fields of 52 studies). (C) Global effect of natural enemy richness on pest control (n = 654 fields of 37 studies). The thick line in each plot represents the median of the posterior distribution of the model. Light gray lines represent 1000 random draws from the posterior. The lines are included to depict uncertainty of the modeled relationship.
Fig. 2
Fig. 2. Direct and indirect effects of richness, total abundance, and evenness on ecosystem services.
(A) Path model of pollinator richness as a predictor of pollination, mediated by pollinator abundance. (B) Path model of natural enemy richness as a predictor of pest control, mediated by natural enemy abundance. (C) Path model of pollinator richness as a predictor of pollination, mediated by pollinator evenness. (D) Path model of natural enemy richness as a predictor of pest control, mediated by natural enemy evenness. Pollination model, n = 821 fields of 52 studies; pest control model, n = 654 fields of 37 studies. Path coefficients are effect sizes estimated from the median of the posterior distribution of the model. Black and red arrows represent positive or negative effects, respectively. Arrow widths are proportional to highest density intervals (HDIs).
Fig. 3
Fig. 3. Direct and indirect effects of landscape simplification on richness of service-providing organisms and associated ecosystem services.
(A) Path model of landscape simplification as a predictor of pollination, mediated by pollinator richness (n = 821 fields of 52 studies). (B) Path model of landscape simplification as a predictor of pest control, mediated by natural enemy richness (n = 654 fields of 37 studies). Path coefficients are effect sizes estimated from the median of the posterior distribution of the model. Black and red arrows represent positive and negative effects, respectively. Arrow widths are proportional to HDIs. Gray arrows represent nonsignificant effects (HDIs overlapped zero).
Fig. 4
Fig. 4. Direct and cascading effects of landscape simplification on final crop production via changes in richness, evenness, and ecosystem services.
(A) Path model representing direct and indirect effects of landscape simplification on final crop production through changes in pollinator richness, evenness, and pollination (n = 438 fields of 27 studies). (B) Path model representing direct and indirect effects of landscape simplification on final crop production through changes in natural enemy richness, evenness, and pest control [only insecticide-free areas were considered in the model (n = 185 fields of 14 studies)]. Path coefficients are effect sizes estimated from the median of the posterior distribution of the model. Black and red arrows represent positive and negative effects, respectively. Arrow widths are proportional to HDIs. Gray arrows represent nonsignificant effects (HDIs overlapped zero).

References

    1. Díaz S., Pascual U., Stenseke M., Martín-López B., Watson R. T., Molnár Z., Hill R., Chan K. M. A., Baste I. A., Brauman K. A., Polasky S., Church A., Lonsdale M., Larigauderie A., Leadley P. W., van Oudenhoven A. P. E., van der Plaat F., Schröter M., Lavorel S., Aumeeruddy-Thomas Y., Bukvareva E., Davies K., Demissew S., Erpul G., Failler P., Guerra C. A., Hewitt C. L., Keune H., Lindley S., Shirayama Y., Assessing nature’s contributions to people. Science 359, 270–272 (2018). - PubMed
    1. S. Díaz, J. Settele, E. Brondízio, Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (United Nations Paris, Fr., 2019), 1–39.
    1. Naeem S., Duffy J. E., Zavaleta E., The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012). - PubMed
    1. Tilman D., Isbell F., Cowles J. M., Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    1. Cardinale B. J., Duffy J. E., Gonzalez A., Hooper D. U., Perrings C., Venail P., Narwani A., Mace G. M., Tilman D., Wardle D. A., Kinzig A. P., Daily G. C., Loreau M., Grace J. B., Larigauderie A., Srivastava D. S., Naeem S., Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012). - PubMed

Publication types