Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 1:253:109731.
doi: 10.1016/j.jenvman.2019.109731. Epub 2019 Oct 27.

Halide removal from water using silver doped magnetic-microparticles

Affiliations

Halide removal from water using silver doped magnetic-microparticles

A M S Polo et al. J Environ Manage. .

Abstract

This study proposes the use of new materials based on core-shell structure magnetic microparticles with Ag0 (Ag(0)-MPs) on their surface to remove bromides and chlorides from waters intended for human consumption. Hydrogen peroxide was used as oxidizing agent, Ag(0)-MPs is thereby oxidized to Ag (I)-MPs, which, when in contact with Cl- and Br- ions, form the corresponding silver halide (AgCl and AgBr) on the surface of Ag-MPs. The concentration of Cl- and Br- ions was followed by using ion selective electrodes (ISEs). Silver microparticles were characterized by high-resolution scanning electron microscopy and X-ray photoelectron spectroscopy, while the presence of AgCl and AgBr on Ag-MPs was determined by microanalysis. We analyzed the influence of operational variables, including: hydrogen peroxide concentration in Ag-MP system, medium pH, influence of Cl- ions on Br- ion removal, and influence of tannic acid as surrogate of organic matter in the medium. Regarding the influence of pH, Br-and Cl- removal was constant within the pH range studied (3.5-7), being more effective for Br- than for Cl- ions. Accordingly, this research states that the system Ag-MPs/H2O2 can remove up to 67.01% of Br- ions and 56.92% of Cl- ions from water (pH = 7, [Ag-MPs]0 = 100 mg L-1, [H2O2]0 = 0.2 mM); it is reusable, regenerated by radiation and can be easily removed by applying a magnetically assisted chemical separation process.

Keywords: Advanced oxidation process; Halide removal; Silver microparticles.

PubMed Disclaimer

LinkOut - more resources