Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar:242:125201.
doi: 10.1016/j.chemosphere.2019.125201. Epub 2019 Oct 24.

Plasmonic Ag decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic water disinfection and organic pollutant removal

Affiliations

Plasmonic Ag decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic water disinfection and organic pollutant removal

Feng Wei et al. Chemosphere. 2020 Mar.

Abstract

Photocatalytic disinfection with high performance is thought to be a promising way for water purification. Herein, plasmonic Ag doped urea-derived graphitic carbon nitride (g-C3N4) composites were fabricated via in-situ photo-deposition at room temperature as the visible-light photocatalyst. Scan electron microscopy and transmission electron microscopy images showed the uniform dispersion of Ag nanoparticles on the surface of g-C3N4 sheet, which facilitated the synergistic effect of antibacterial performance from Ag and photocatalytic property from Ag/g-C3N4 composites. Photocatalytic water disinfection against Escherichia coli with visible light was performed to demonstrate the improved photocatalytic property with assistance of Ag. The 3-Ag/g-C3N4 exhibited the best bactericidal performance by inactivating all bacteria within 120 min with damaged cell membranes of Escherichia coli observed by scan electron microscopy and transmission electron microscopy images. Photoluminescence spectra, steady-state surface photovoltage spectra, photocurrent response, and electrochemical impedance spectra results revealed that Ag nanoparticles inhibited the recombination of photo-generated e- and h+ pairs and further reinforced the photocatalytic performance of g-C3N4. Scavenger experiments indicated that h+ produced on valence band of g-C3N4 dominated the photocatalytic disinfection process against Escherichia coli. This work further proved Ag/g-C3N4 showed great potential in photocatalytic water disinfection under visible-light irradiation.

Keywords: Ag/g-C(3)N(4); Disinfection performance; Photocatalysis; Surface plasmon resonance (SPR); Visible light irradiation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources