Inverse-QSPR for de novo Design: A Review
- PMID: 31682079
- DOI: 10.1002/minf.201900087
Inverse-QSPR for de novo Design: A Review
Abstract
The use of computer tools to solve chemistry-related problems has given rise to a large and increasing number of publications these last decades. This new field of science is now well recognized and labelled Chemoinformatics. Among all chemoinformatics techniques, the use of statistical based approaches for property predictions has been the subject of numerous research reflecting both new developments and many cases of applications. The so obtained predictive models relating a property to molecular features - descriptors - are gathered under the acronym QSPR, for Quantitative Structure Property Relationships. Apart from the obvious use of such models to predict property values for new compounds, their use to virtually synthesize new molecules - de novo design - is currently a high-interest subject. Inverse-QSPR (i-QSPR) methods have hence been developed to accelerate the discovery of new materials that meet a set of specifications. In the proposed manuscript, we review existing i-QSPR methodologies published in the open literature in a way to highlight developments, applications, improvements and limitations of each.
Keywords: chemoinformatics; de novo design; inverse QSPR; molecular generation; structure-property relationships.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Chemoinformatics for corrosion science: Data-driven modeling of corrosion inhibition by organic molecules.Mol Inform. 2024 Nov;43(11):e202400082. doi: 10.1002/minf.202400082. Epub 2024 Oct 15. Mol Inform. 2024. PMID: 39404187 Review.
-
Recent Advances in Machine-Learning-Based Chemoinformatics: A Comprehensive Review.Int J Mol Sci. 2023 Jul 15;24(14):11488. doi: 10.3390/ijms241411488. Int J Mol Sci. 2023. PMID: 37511247 Free PMC article. Review.
-
Machine Learning in Chemoinformatics and Medicinal Chemistry.Annu Rev Biomed Data Sci. 2022 Aug 10;5:43-65. doi: 10.1146/annurev-biodatasci-122120-124216. Epub 2022 Apr 19. Annu Rev Biomed Data Sci. 2022. PMID: 35440144 Review.
-
Genetic Algorithm and Self-Organizing Maps for QSPR Study of Some N-aryl Derivatives as Butyrylcholinesterase Inhibitors.Curr Drug Discov Technol. 2016;13(4):232-253. doi: 10.2174/1570163813666160725114241. Curr Drug Discov Technol. 2016. PMID: 27457492
-
A novel workflow for the inverse QSPR problem using multiobjective optimization.J Comput Aided Mol Des. 2006 May;20(5):333-41. doi: 10.1007/s10822-006-9063-1. Epub 2006 Sep 21. J Comput Aided Mol Des. 2006. PMID: 17031542
Cited by
-
Molecular Descriptors, Structure Generation, and Inverse QSAR/QSPR Based on SELFIES.ACS Omega. 2023 Jun 5;8(24):21781-21786. doi: 10.1021/acsomega.3c01332. eCollection 2023 Jun 20. ACS Omega. 2023. PMID: 37360490 Free PMC article.
-
GenUI: interactive and extensible open source software platform for de novo molecular generation and cheminformatics.J Cheminform. 2021 Sep 25;13(1):73. doi: 10.1186/s13321-021-00550-y. J Cheminform. 2021. PMID: 34563271 Free PMC article.
-
Utilizing Machine Learning Models for Predicting Diamagnetic Susceptibility of Organic Compounds.ACS Omega. 2024 Mar 15;9(12):14368-14374. doi: 10.1021/acsomega.3c10469. eCollection 2024 Mar 26. ACS Omega. 2024. PMID: 38560008 Free PMC article.
-
MolFinder: an evolutionary algorithm for the global optimization of molecular properties and the extensive exploration of chemical space using SMILES.J Cheminform. 2021 Mar 18;13(1):24. doi: 10.1186/s13321-021-00501-7. J Cheminform. 2021. PMID: 33736687 Free PMC article.
-
SUSSOL-Using Artificial Intelligence for Greener Solvent Selection and Substitution.Molecules. 2020 Jul 3;25(13):3037. doi: 10.3390/molecules25133037. Molecules. 2020. PMID: 32635177 Free PMC article.
References
-
- None
-
- P. G. Polishchuk, T. I. Madzhidov, A. Varnek, J. Comput.-Aided Mol. Des. 2013, 27, 675;
-
- R. S. Bohacek, C. McMartin, W. C. Guida in An Introduction to Lorentz Surfaces (Ed.: T. Weinstein), DE GRUYTER, Berlin, New York, 1996, pp. 3-50.
-
- E. M. Carreira, Chem. Rev. 2015, 115, 8945.
-
- S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, Nucleic Acids Res. 2016, 44, D1202-13.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources