Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 4;14(11):e0224267.
doi: 10.1371/journal.pone.0224267. eCollection 2019.

Integrated pan-cancer gene expression and drug sensitivity analysis reveals SLFN11 mRNA as a solid tumor biomarker predictive of sensitivity to DNA-damaging chemotherapy

Affiliations

Integrated pan-cancer gene expression and drug sensitivity analysis reveals SLFN11 mRNA as a solid tumor biomarker predictive of sensitivity to DNA-damaging chemotherapy

Kevin Shee et al. PLoS One. .

Abstract

Background: Precision oncology seeks to integrate multiple layers of data from a patient's cancer to effectively tailor therapy. Conventional chemotherapies are sometimes effective but accompanied by adverse events, warranting the identification of a biomarker of chemosensitivity.

Objective: Identify an mRNA biomarker that predicts chemosensitivity across solid tumor subtypes.

Methods: We performed a pan-solid tumor analysis integrating gene expression and drug sensitivity profiles from 3 cancer cell line datasets to identify transcripts correlated with sensitivity to a panel of chemotherapeutics. We then tested the ability of an mRNA biomarker to predictive clinical outcomes in cohorts of patients with breast, lung, or ovarian cancer.

Results: Expression levels of several mRNA transcripts were significantly correlated with sensitivity or resistance chemotherapeutics in cancer cell line datasets. The only mRNA transcript significantly correlated with sensitization to multiple classes of DNA-damaging chemotherapeutics in all 3 cell line datasets was encoded by Schlafen Family Member 11 (SLFN11). Analyses of multiple breast, lung, and ovarian cancer patient cohorts treated with chemotherapy confirmed SLFN11 mRNA expression as a predictive biomarker of longer overall survival and improved tumor response.

Conclusions: Tumor SLFN11 mRNA expression is a biomarker of sensitivity to an array of DNA-damaging chemotherapeutics across solid tumor subtypes.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. SLFN11 mRNA levels are strongly correlated with sensitivity to chemotherapeutics in cancer cells.
A) mRNA levels for each gene were compared with drug sensitivity to a panel of chemotherapeutics across the CTRP (IC50), GDSC (AUC), and NCI60 (IC50) datasets. Pearson correlation values were plotted for each gene for SN38, mitomycin, and gemcitabine as representative chemotherapeutics. B) SLFN11 mRNA levels were compared with drug sensitivity as in (A) by Pearson correlation. Each point represents the IC50 of a given drug. Horizontal lines indicate mean ± SEM for each drug class. Black filled, white-filled, and color-filled symbols indicate p≤0.001, p≤0.05, and p>0.05, respectively.
Fig 2
Fig 2. SLFN11 mRNA expression is commonly associated with chemosensitivity in cancer cell lines.
Numbers of genes with expression correlated with sensitivity (R≤-0.2) or resistance (R≥0.2) to >50% of drugs within a class in ≥2 databases (CTRP, GDSC, or NCI60) are indicated. Genes are listed in Table 2.
Fig 3
Fig 3. SLFN11 expression is associated with improved survival outcomes in breast, lung, and ovarian cancer patients treated with chemotherapy.
RNA expression and survival data were obtained for primary breast, lung, and ovarian tumors from 4 datasets containing information from 61 breast cancer patients (A/D), 55 and196 lung cancer patients (B/E and C/F, respectively), and 110 ovarian cancer patients (G). Patients were dichotomized into High vs. Low tumor SLFN11 mRNA based on expression above or below the median. Survival analyses were performed for all patients in aggregate in (A-C), and only for patients who received chemotherapy (D-G). Groups were compared by log-rank test.
Fig 4
Fig 4. Patients with tumors highly responsive to chemotherapy have high SLFN11 transcript levels.
Z-score normalized RNA expression and tumor response data were obtained for primary breast and ovarian tumors from 2 datasets containing information from 115 breast cancer patients (A) and 75 ovarian cancer patients (B) treated with neoadjuvant chemotherapy. Breast cancer patients were divided into patients who had a pathologic Complete Response after chemotherapy (pCR), to those that did not (non-pCR), and SLFN11 expression was compared by Student t-test with Welch’s correction. Ovarian cancer patients were divided into patients who were highly sensitive (HS; defined as DFS>732 days according to [15]) or not (non-HS), and analyzed as above.

References

    1. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England journal of medicine. 2011;364(26):2507–16. Epub 2011/06/07. 10.1056/NEJMoa1103782 - DOI - PMC - PubMed
    1. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. The New England journal of medicine. 2018;379(2):111–21. Epub 2018/06/05. 10.1056/NEJMoa1804710 - DOI - PMC - PubMed
    1. Morgan G, Ward R, Barton M. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clinical oncology. 2004;16(8):549–60. Epub 2005/01/06. 10.1016/j.clon.2004.06.007 . - DOI - PubMed
    1. Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nature chemical biology. 2016;12(2):109–16. Epub 2015/12/15. 10.1038/nchembio.1986 - DOI - PMC - PubMed
    1. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic acids research. 2013;41(Database issue):D955–61. Epub 2012/11/28. 10.1093/nar/gks1111 - DOI - PMC - PubMed

Publication types

MeSH terms