Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 11;19(12):8903-8910.
doi: 10.1021/acs.nanolett.9b03783. Epub 2019 Nov 12.

Single-Crystalline γ-Ga2S3 Nanotubes via Epitaxial Conversion of GaAs Nanowires

Affiliations

Single-Crystalline γ-Ga2S3 Nanotubes via Epitaxial Conversion of GaAs Nanowires

Eli Sutter et al. Nano Lett. .

Abstract

The chemical transformation of nanowire templates into nanotubes is a promising avenue toward hollow one-dimensional (1D) nanostructures. To date, high-quality single crystalline tubes of nonlayered inorganic crystals have been obtained by solid-state reactions in diffusion couples of nanowires with deposited thin film shells, but this approach presents issues in achieving single-phase tubes with a desired stoichiometry. Chemical transformations with reactants supplied from the gas- or vapor-phase can avoid these complications, allowing single-phase nanotubes to be obtained through self-termination of the reaction once the sacrificial template has been consumed. Here, we demonstrate the realization of this scenario with the transformation of zincblende GaAs nanowires into single-crystalline cubic γ-Ga2S3 nanotubes by reaction with sulfur vapor. The conversion proceeds via the formation of epitaxial GaAs-Ga2S3 core-shell structures, vacancy injection and aggregation into Kirkendall voids, elastic relaxation of the detached Ga2S3 shell, and finally complete incorporation of Ga in a crystalline chalcogenide tube. Absorption and luminescence spectroscopy on individual nanotubes show optoelectronic properties, notably a ∼3.1 eV bandgap and intense band-edge and near band-edge emission consistent with high-quality single crystals, along with transitions between gap-states due to the inherent cation-vacancy defect structure of Ga2S3. Our work establishes the transformation of nanowires via vapor-phase reactions as a viable approach for forming single-crystalline hollow 1D nanostructures with promising properties.

Keywords: Kirkendall effect; Nanowires; cathodoluminescence; electron energy loss spectroscopy; optoelectronics.

PubMed Disclaimer

Publication types

LinkOut - more resources