Intronic RNA: Ad'junk' mediator of post-transcriptional gene regulation
- PMID: 31682938
- PMCID: PMC7171924
- DOI: 10.1016/j.bbagrm.2019.194439
Intronic RNA: Ad'junk' mediator of post-transcriptional gene regulation
Abstract
RNA splicing, the process through which intervening segments of noncoding RNA (introns) are excised from pre-mRNAs to allow for the formation of a mature mRNA product, has long been appreciated for its capacity to add complexity to eukaryotic proteomes. However, evidence suggests that the utility of this process extends beyond protein output and provides cells with a dynamic tool for gene regulation. In this review, we aim to highlight the role that intronic RNA plays in mediating specific splicing outcomes in pre-mRNA processing, as well as explore an emerging class of stable intronic sequences that have been observed to act in gene expression control. Building from underlying flexibility in both sequence and structure, intronic RNA provides mechanisms for post-transcriptional gene regulation that are amenable to the tissue and condition specific needs of eukaryotic cells. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Copyright © 2019. Published by Elsevier B.V.
Figures


Similar articles
-
More than a messenger: Alternative splicing as a therapeutic target.Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194395. doi: 10.1016/j.bbagrm.2019.06.006. Epub 2019 Jul 2. Biochim Biophys Acta Gene Regul Mech. 2019. PMID: 31271898 Free PMC article. Review.
-
Combinatorial regulation of alternative splicing.Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194392. doi: 10.1016/j.bbagrm.2019.06.003. Epub 2019 Jul 2. Biochim Biophys Acta Gene Regul Mech. 2019. PMID: 31276857 Free PMC article. Review.
-
Alternative pre-mRNA splicing and proteome expansion in metazoans.Nature. 2002 Jul 11;418(6894):236-43. doi: 10.1038/418236a. Nature. 2002. PMID: 12110900 Review.
-
The regulation properties of RNA secondary structure in alternative splicing.Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194401. doi: 10.1016/j.bbagrm.2019.07.002. Epub 2019 Jul 16. Biochim Biophys Acta Gene Regul Mech. 2019. PMID: 31323437 Review.
-
Nucleotide sequence composition adjacent to intronic splice sites improves splicing efficiency via its effect on pre-mRNA local folding in fungi.RNA. 2015 Oct;21(10):1704-18. doi: 10.1261/rna.051268.115. Epub 2015 Aug 5. RNA. 2015. PMID: 26246046 Free PMC article.
Cited by
-
sic-4 Reports in sick! Loss of SICKLE induces salicylic acid-dependent cell death in Arabidopsis.Plant Physiol. 2023 Jul 3;192(3):2238-2239. doi: 10.1093/plphys/kiad237. Plant Physiol. 2023. PMID: 37070866 Free PMC article. No abstract available.
-
Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control.Int J Mol Sci. 2020 Jul 21;21(14):5161. doi: 10.3390/ijms21145161. Int J Mol Sci. 2020. PMID: 32708277 Free PMC article. Review.
-
Unique and Repeated Stwintrons (Spliceosomal Twin Introns) in the Hypoxylaceae.J Fungi (Basel). 2022 Apr 13;8(4):397. doi: 10.3390/jof8040397. J Fungi (Basel). 2022. PMID: 35448628 Free PMC article.
-
The Roles of Noncoding RNAs in Systemic Sclerosis.Front Immunol. 2022 Apr 8;13:856036. doi: 10.3389/fimmu.2022.856036. eCollection 2022. Front Immunol. 2022. PMID: 35464474 Free PMC article. Review.
-
Identification of Intronic Lariat-Derived Circular RNAs in Arabidopsis by RNA Deep Sequencing.Methods Mol Biol. 2021;2362:93-100. doi: 10.1007/978-1-0716-1645-1_5. Methods Mol Biol. 2021. PMID: 34195958
References
-
- Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LDN, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TSK, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A. A draft map of the human proteome. (2014) Nature 509: 575–581. doi:10.1038/nature13302. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources