Membrane protein megahertz crystallography at the European XFEL
- PMID: 31685819
- PMCID: PMC6828683
- DOI: 10.1038/s41467-019-12955-3
Membrane protein megahertz crystallography at the European XFEL
Erratum in
-
Author Correction: Membrane protein megahertz crystallography at the European XFEL.Nat Commun. 2020 Jan 30;11(1):703. doi: 10.1038/s41467-020-14436-4. Nat Commun. 2020. PMID: 32001708 Free PMC article.
Abstract
The world's first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.
Conflict of interest statement
The authors declare no competing interests.
Figures
References
Publication types
MeSH terms
Substances
Supplementary concepts
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
