Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep;54(5):531-539.
doi: 10.1016/j.rboe.2017.12.010. Epub 2019 Oct 29.

Thick Graft Versus Double-Bundle Technique on Posterior Cruciate Ligament Reconstruction: Experimental Biomechanical Study with Cadavers

Affiliations

Thick Graft Versus Double-Bundle Technique on Posterior Cruciate Ligament Reconstruction: Experimental Biomechanical Study with Cadavers

João Alberto Ramos Maradei-Pereira et al. Rev Bras Ortop (Sao Paulo). 2019 Sep.

Abstract

Objective To evaluate the biomechanical effect of graft thickness compared with the double-bundle technique on posterior cruciate ligament (PCL) reconstruction in human cadaveric knees. Methods A total of 9 human cadaveric knees were tested in 5 conditions: intact knee (INT); single-bundle reconstruction with a 10-mm quadriceps tendon (SB); double-bundle reconstruction with a 10 mm-quadriceps tendon for the anterolateral bundle and a 7-mm doubled semitendinosus tendon for the posteromedial bundle (DB); single-bundle reconstruction with a 10-mm quadriceps tendon plus a 7-mm doubled semitendinosus tendon (SBT); and PCL-deficient (NoPCL). The posterior tibial translation (PTT) was measured in response to a 134-N posterior tibial load at 0 , 30 , 60 e 90 of knee flexion. Results The PTT values of the DB and SBT techniques were always significantly lower (better stability) than those of the SB technique. The PTT values of the SBT technique were significantly lower than those of the DB technique at 60 ( p = 0.005) and 90 ( p = 0.001). Conclusions Graft enlargement improves knee stability in isolated PCL reconstructions, whereas the graft division in the two-bundle technique worsens this stability at 60 and 90 of knee flexion. The findings of the present study suggest that knee stability in PCL reconstructions may be improved with the use of thicker grafts in the SB technique rather than performing the DB technique.

Keywords: biomechanical phenomena; cadaver; knee injuries; posterior cruciate ligament; posterior cruciate ligament reconstruction.

PubMed Disclaimer

Conflict of interest statement

Conflitos de interesse Os autores declaram não haver conflitos de interesse.

Figures

Fig. 1
Fig. 1
Knee positioned at 90° of flexion, fixated to the testing machine. The tibia remained horizontal, with the anterior margin facing the ground. The machine performed the elevation or descent of the femur in relation to the tibia, which corresponded, respectively, to the movement of the anterior and posterior drawers.
Fig. 2
Fig. 2
Sequence of testing conditions.
Fig. 3
Fig. 3
Graft tensioning monitored by the dynamometer.
Fig. 4
Fig. 4
Tibial fixation device. The polyester threads from the graft were locked between two platelets.
Fig. 5
Fig. 5
Posterior tibial translation (PTT) of all testing conditions at each flexion angle: intact posterior cruciate ligament (PCL) (blue line); injured PCL (red line); single-bundle reconstruction with a 10-mm quadriceps tendon (green line); double-bundle reconstruction with a 10-mm quadriceps tendon for the anterolateral bundle and a 7-mm doubled semitendinosus tendon for the posteromedial bundle (brown line); single-bundle reconstruction with a 10-mm quadriceps tendon plus a 7-mm doubled semitendinosus tendon (black line).
Fig. 1
Fig. 1
Joelho posicionado a 90° de flexão, fixado à máquina de teste. A tíbia permaneceu horizontalmente com a margem anterior voltada para o solo. A máquina realizava a elevação ou descida do fêmur em relação à tíbia, correspondendo, respectivamente, ao movimento de gaveta anterior e posterior.
Fig. 2
Fig. 2
Sequência das condições de teste.
Fig. 3
Fig. 3
Tensionamento do enxerto monitorado pelo dinamômetro.
Fig. 4
Fig. 4
O dispositivo de fixação tibial. Os fios de poliéster do enxerto foram bloqueados entre duas plaquetas.
Fig. 5
Fig. 5
O limite de deslocamento posterior da tíbia (LDPT) de todas as condições de teste a cada ângulo de flexão: ligamento cruzado posterior (LCP) intacto (linha azul); LCP lesionado (linha vermelha); reconstrução de feixe único com tendão do quadríceps de 10 mm (linha verde); reconstrução de duplo feixe com um tendão do quadríceps de 10 mm para o feixe anterolateral e um feixe de 7mm do semitendíneo duplo para o feixe póstero-medial (linha marrom); reconstrução de feixe único com um tendão do quadríceps de 10 mm mais um feixe de 7mm do semitendíneo duplo (linha preta).

Similar articles

Cited by

References

    1. Harner C D, Höher J. Evaluation and treatment of posterior cruciate ligament injuries. Am J Sports Med. 1998;26(03):471–482. - PubMed
    1. Wiley W B, Askew M J, Melby A, III, Noe D A. Kinematics of the posterior cruciate ligament/posterolateral corner-injured knee after reconstruction by single- and double-bundle intra-articular grafts. Am J Sports Med. 2006;34(05):741–748. - PubMed
    1. Kannus P, Bergfeld J, Järvinen M et al.Injuries to the posterior cruciate ligament of the knee. Sports Med. 1991;12(02):110–131. - PubMed
    1. Parolie J M, Bergfeld J A. Long-term results of nonoperative treatment of isolated posterior cruciate ligament injuries in the athlete. Am J Sports Med. 1986;14(01):35–38. - PubMed
    1. Dejour H, Walch G, Peyrot J, Eberhard P. Histoire naturelle de la rupture du ligament croisé postérieur. [The natural history of rupture of the posterior cruciate ligament] Rev Chir Orthop Repar Appar Mot. 1988;74(01):35–43. - PubMed