Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May;22(5):383-394.
doi: 10.1089/dia.2019.0252. Epub 2020 Feb 6.

An Artificial Neural Network-based Predictive Model to Support Optimization of Inpatient Glycemic Control

Affiliations

An Artificial Neural Network-based Predictive Model to Support Optimization of Inpatient Glycemic Control

Scott M Pappada et al. Diabetes Technol Ther. 2020 May.

Abstract

Background: Achieving glycemic control in critical care patients is of paramount importance, and has been linked to reductions in mortality, intensive care unit (ICU) length of stay, and morbidities such as infection. The myriad of illnesses and patient conditions render maintenance of glycemic control very challenging in this setting. Materials and Methods: This study involved collection of continuous glucose monitoring (CGM) data, and other associated measures, from the electronic medical records of 127 patients for the first 72 h of ICU care who upon admission to the ICU had a diagnosis of type 1 (n = 8) or type 2 diabetes (n = 97) or a glucose value >150 mg/dL (n = 22). A neural network-based model was developed to predict a complete trajectory of glucose values up to 135 min ahead of time. Model accuracy was validated using data from 15 of the 127 patients who were not included in the model training set to simulate model performance in real-world health care settings. Results: Predictive models achieved an improved accuracy and performance compared with previous models that were reported by our research team. Model error, expressed as mean absolute difference percent, was 10.6% with respect to interstitial glucose values (CGM) and 15.9% with respect to serum blood glucose values collected 135 min in the future. A Clarke Error Grid Analysis of model predictions with respect to the reference CGM and blood glucose measurements revealed that >99% of model predictions could be regarded as clinically acceptable and would not lead to inaccurate insulin therapy or treatment recommendations. Conclusion: The noted clinical acceptability of these models illustrates their potential utility within a clinical decision support system to assist health care providers in the optimization of glycemic management in critical care patients.

Keywords: Clinical decision support; Glycemic control; Intensive care unit; Machine learning; Predictive models.

PubMed Disclaimer

Publication types

LinkOut - more resources