Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar;22(3):373-382.
doi: 10.1111/dom.13905. Epub 2019 Dec 16.

Effect of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on gluconeogenesis in proximal renal tubules

Affiliations

Effect of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on gluconeogenesis in proximal renal tubules

Jin Hee Kim et al. Diabetes Obes Metab. 2020 Mar.

Abstract

Aims: To investigate the effect of dapagliflozin, a sodium-glucose co-transporter-2 (SGLT2) inhibitor, on renal gluconeogenesis in vitro, ex vivo and in vivo.

Materials and methods: We treated HK-2 cells (human renal proximal tubule cells) and mouse primary renal proximal tubule cells with dapagliflozin, and evaluated the process of renal gluconeogenesis. We also examined the effect of dapagliflozin on renal gluconeogenesis in normoglycaemic and hyperglycaemic mice.

Results: Dapagliflozin enhanced renal gluconeogenesis in vitro, ex vivo and in vivo. It increased phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase), peroxisome proliferative activated receptor-gamma co-activator 1α (PGC-1α) and phosphorylated cyclic-AMP response element binding protein (CREB) expression and decreased phosphorylated Forkhead Box O1 (FOXO1) expression in HK-2 cells, mouse primary renal proximal tubule cells, and the mouse renal cortex. Glutamine enhanced the gluconeogenic effect of dapagliflozin in HK-2 cells. Also, dapagliflozin increased 14 C-glutamine utilization in HK-2 cells. Glucagon did not affect dapagliflozin-induced enhancement in renal gluconeogenesis in HK-2 cells. SGLT2 gene knockdown with siRNA resulted in an increase of gluconeogenic gene expression and associated transcription factors in HK-2 cells. Dapagliflozin reduced fasting plasma glucose levels and improved oral glucose tolerance and insulin tolerance in high-fat diet-fed hyperglycaemic mice, although renal gluconeogenesis was enhanced.

Conclusions: Dapagliflozin increased levels of gluconeogenic enzyme in the renal cortex and consequently increased renal gluconeogenesis, which is mediated by SGLT2 inhibition.

Keywords: SGLT2 inhibitor; antidiabetic drug; dapagliflozin; glycaemic control.

PubMed Disclaimer

References

REFERENCES

    1. Vallon V, Gerasimova M, Rose MA, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol. 2014;306:F194-F204.
    1. Komala MG, Panchapakesan U, Pollock C, Mather A. Sodium glucose cotransporter 2 and the diabetic kidney. Curr Opin Nephrol Hypertens. 2013;22:113-119.
    1. Jurczak MJ, Lee HY, Birkenfeld AL, et al. SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function. Diabetes. 2011;60:890-898.
    1. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20:953-966.
    1. Sonesson C, Johansson PA, Johnsson E, Gause-Nilsson I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol. 2016;15:37.

Publication types

LinkOut - more resources