Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 6;14(11):e0224164.
doi: 10.1371/journal.pone.0224164. eCollection 2019.

Factors influencing bird-building collisions in the downtown area of a major North American city

Affiliations

Factors influencing bird-building collisions in the downtown area of a major North American city

Scott R Loss et al. PLoS One. .

Abstract

Bird-building collisions are the largest source of avian collision mortality in North America. Despite a growing literature on bird-building collisions, little research has been conducted in downtown areas of major cities, and no studies have included stadiums, which can be extremely large, often have extensive glass surfaces and lighting, and therefore may cause many bird collisions. Further, few studies have assessed the role of nighttime lighting in increasing collisions, despite the often-cited importance of this factor, or considered collision correlates for different seasons and bird species. We conducted bird collision monitoring over four migration seasons at 21 buildings, including a large multi-use stadium, in downtown Minneapolis, Minnesota, USA. We used a rigorous survey methodology to quantify among-building variation in collisions and assess how building features (e.g., glass area, lighting, vegetation) influence total collision fatalities, fatalities for separate seasons and species, and numbers of species colliding. Four buildings, including the stadium, caused a high proportion of all collisions and drove positive effects of glass area and amount of surrounding vegetation on most collision variables. Excluding these buildings from analyses resulted in slightly different collision predictors, suggesting that factors leading some buildings to cause high numbers of collisions are not the exact same factors causing variation among more typical buildings. We also found variation in collision correlates between spring and fall migration and among bird species, that factors influencing collision fatalities also influence numbers of species colliding, and that the proportion, and potentially area, of glass lighted at night are associated with collisions. Thus, reducing bird collisions at large buildings, including stadiums, should be achievable by reducing glass area (or treating existing glass), reducing light emission at night, and prioritizing mitigation efforts for glass surfaces near vegetated areas and/or avoiding use of vegetation near glass.

PubMed Disclaimer

Conflict of interest statement

We received research funding from commercial sources (Minnesota Sports Facilities Authority and Minnesota Vikings Football, LLC). This does not alter our adherence to PLOS ONE policies on sharing data and materials. The funders had no role in study design, data collection and analysis, the decision to publish, or preparation of the manuscript.

Figures

Fig 1
Fig 1. Study area.
(a) General location of study area in the United States and (b) location of study area containing 21 buildings, including U.S. Bank Stadium (large, gray, irregularly shaped building in lower right of image), monitored for bird collisions in downtown Minneapolis, Minnesota, USA, 2017–2018; image sources: USGS National Map Viewer base map (a) and NAIP Plus aerial imagery (b).
Fig 2
Fig 2. Bird collisions at U.S. Bank stadium.
(a) Locations of 229 bird collisions (159 fatal collisions; 70 non-fatal collisions; 95 collisions in 2017; 134 in 2018) observed during monitoring at U.S. Bank Stadium in downtown Minneapolis, Minnesota, USA, 2017–2018; Points include carcasses potentially resulting from predation events and bird collisions with skyways (i.e., the high raw counts described in the text). (b, c) the largest unbroken span of glass (~6,000 m2) where 52% of all collisions at the stadium occurred; (d) a glass surface on the northeast façade where 11% of collisions occurred; (e) a glass surface on the southwest façade where 17% of collisions occurred. Image sources: USGS National Map Viewer NAIP Plus aerial imagery (a); the authors (b-e).
Fig 3
Fig 3. Correlates of numbers of collision fatalities (all buildings).
Relationships between high bias-adjusted estimates of bird collision fatalities (see text for description of this fatality estimate) and (a) glass area, and (b) proportion of land covered by vegetation within 50 m. The four buildings estimated to cause the greatest numbers of fatalities, including the stadium, are labelled (numbers represent unique numeric codes used for purposes of current study); For results based on 17 buildings with these 4 potential outliers removed, see text and S1 Fig.
Fig 4
Fig 4. Correlates of numbers of species colliding (all buildings).
Relationships between total numbers of species observed as casualties (including both fatal and non-fatal collisions) and (a) glass area, (b) proportion of glass area with lighting emitted at night, and (c) proportion of land covered by vegetation within 50 m. The four buildings estimated to cause the greatest numbers of collisions, including the stadium, are labelled (numbers represent unique numeric codes used for purposes of current study); For results based on 17 buildings with these 4 potential outliers removed, see text and S2 Fig.

References

    1. Longcore T, Rich C, Mineau P, MacDonald B, Bert DG, Sullivan LM, et al. An estimate of avian mortality at communication towers in the United States and Canada. PLOS ONE 2012;7: e34025 10.1371/journal.pone.0034025 - DOI - PMC - PubMed
    1. Calvert A, Bishop C, Elliot R, Krebs E, Kydd T, Machtans C, et al. A synthesis of human-related avian mortality in Canada. Avian Conserv Ecol. 2013;8: 11.
    1. Loss SR, Will T, Marra PP. Direct mortality of birds from anthropogenic causes. Annu Rev Ecol Evol Syst. 2015;46: 99–125.
    1. Loss SR, Will T, Loss SS, Marra PP. Bird-building collisions in the United States: Estimates of annual mortality and species vulnerability. Condor 2014;116: 8–23.
    1. Machtans C, Wedeles C, Bayne E. A first estimate for Canada of the number of birds killed by colliding with building windows. Avian Conserv Ecol. 2013;8: 6.

Publication types