Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 26;13(11):13573-13580.
doi: 10.1021/acsnano.9b07563. Epub 2019 Nov 11.

Self-Powered Broad-band Photodetectors Based on Vertically Stacked WSe2/Bi2Te3 p-n Heterojunctions

Affiliations

Self-Powered Broad-band Photodetectors Based on Vertically Stacked WSe2/Bi2Te3 p-n Heterojunctions

Huawei Liu et al. ACS Nano. .

Abstract

Semiconducting p-n heterojunctions, serving as the basic unit of modern electronic devices, such as photodetectors, solar-energy conversion devices, and light-emitting diodes (LEDs), have been extensively investigated in recent years. In this work, high performance self-powered broad-band photodetectors were fabricated based on vertically stacked p-n heterojunctions though combining p-type WSe2 with n-type Bi2Te3 via van der Waals (vdW) epitaxial growth. Devices based on the p-n heterojunction show obvious current rectification behaviors in the dark and superior photovoltaic characteristics under light irradiation. A maximum short circuit current of 18 nA and open circuit voltage of 0.25 V can be achieved with the illumination light of 633 nm (power density: 26.4 mW/cm2), which are among the highest values compared with the ever reported 2D vdW heterojunctions synthesized by chemical vapor deposition (CVD) method. Benefiting from the broad-band absorption of the heterostructures, the detection range can be expanded from the visible to near-infrared (375-1550 nm). Moreover, ascribing to the efficient carriers separation process at the junction interfaces, the devices can be further employed as self-powered photodetectors, where a fast response time (∼210 μs) and high responsivity (20.5 A/W at 633 nm and 27 mA/W at 1550 nm) are obtained under zero bias voltage. The WSe2/Bi2Te3 p-n heterojunction-based self-powered photodetectors with high photoresponsivity, fast photoresponse time, and broad spectral response will find potential applications in high speed and self-sufficient broad-band devices.

Keywords: broad band; charge transfer; photodetector; photovoltaic; p−n heterojunction; self-powered.

PubMed Disclaimer

LinkOut - more resources