High-Resolution Infrared Synchrotron Investigation of (HCN)2 and a Semi-Experimental Determination of the Dissociation Energy D0
- PMID: 31702872
- PMCID: PMC6916300
- DOI: 10.1002/cphc.201900811
High-Resolution Infrared Synchrotron Investigation of (HCN)2 and a Semi-Experimental Determination of the Dissociation Energy D0
Abstract
The high-resolution infrared absorption spectrum of the donor bending fundamental band ν of the homodimer (HCN)2 has been collected by long-path static gas-phase Fourier transform spectroscopy at 207 K employing the highly brilliant 2.75 GeV electron storage ring source at Synchrotron SOLEIL. The rovibrational structure of the ν transition has the typical appearance of a perpendicular type band associated with a Σ-Π transition for a linear polyatomic molecule. The total number of 100 assigned transitions are fitted employing a standard semi-rigid linear molecule Hamiltonian, providing the band origin ν0 of 779.05182(50) cm-1 together with spectroscopic parameters for the degenerate excited state. This band origin, blue-shifted by 67.15 cm-1 relative to the HCN monomer, provides the final significant contribution to the change of intra-molecular vibrational zero-point energy upon HCN dimerization. The combination with the vibrational zero-point energy contribution determined recently for the class of large-amplitude inter-molecular fundamental transitions then enables a complete determination of the total change of vibrational zero-point energy of 3.35±0.30 kJ mol-1 . The new spectroscopic findings together with previously reported benchmark CCSDT(Q)/CBS electronic energies [Hoobler et al. ChemPhysChem. 19, 3257-3265 (2018)] provide the best semi-experimental estimate of 16.48±0.30 kJ mol-1 for the dissociation energy D0 of this prototypical homodimer.
Keywords: Dissociation Energy; Hydrogen Bonding; Infrared Synchrotron Radiation; Non-Covalent Forces; Vibrational Zero-Point Energy.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Bohac E. J., Marshall M. D., Miller R. E., J. Chem. Phys. 1992, 96, 6681.
-
- Rezac J., Hobza P., J. Chem. Theory Comput. 2014, 10, 3066–3073. - PubMed
-
- Rocher-Casterline B. E., Ch'ng L. C., Mollner A. K., Reisler H., J. Chem. Phys. 2011, 134, 211101. - PubMed
-
- Shank A., Wang Y., Kaledin A., Braams B. J., Bowman J. M., J. Chem. Phys. 2000, 130, 144314. - PubMed
-
- Tschumper G. S., Leininger M. L., Hoffman B. C., Valeev E. F., Schaefer H. F., Quack M., J. Chem. Phys. 2002, 116, 690–701.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
