Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 27:1092:117-125.
doi: 10.1016/j.aca.2019.09.053. Epub 2019 Sep 21.

A photostable Si-rhodamine-based near-infrared fluorescent probe for monitoring lysosomal pH during heat stroke

Affiliations

A photostable Si-rhodamine-based near-infrared fluorescent probe for monitoring lysosomal pH during heat stroke

Guo-Jiang Mao et al. Anal Chim Acta. .

Abstract

Heat stroke is a symptom of hyperthermia with a temperature of more than 40 °C, which usually leads to all kinds of physical discomfort and even death. It is necessary to study the mechanism of action of heat stroke on cells or organelles (such as cytotoxicity of heat) and the processes of cells or organelles during heat stroke. Recent studies have shown that there is a certain correlation between heat stroke and lysosome acidity. In order to clarify their relationship, Lyso-NIR-pH, a photostable Si-rhodamine-based near-infrared fluorescent probe, was developed for sensing pH changes in lysosomes during heat stroke in this paper. For Lyso-NIR-pH, a morpholine group is employed as the lysosome-targeting unit and a H+-triggered openable deoxylactam is employed as the response unit to pH. Lyso-NIR-pH can detect pH with a high selectivity and a sensitivity, and its pKa is 4.63. Lyso-NIR-pH also has outstanding imaging performances, such as excellent lysosome-targeting ability, low autofluorescence and photostable fluorescence signal, which are in favor of long-term imaging of pH with accurate fluorescence signals. Moreover, we successfully applied Lyso-NIR-pH to monitor lysosomal pH increases induced by chloroquine and apoptosis in live cells. Finally, we successfully applied Lyso-NIR-pH for monitoring changes of lysosomal pH during heat stroke. These results confirmed that Lyso-NIR-pH is a powerful tool to monitor pH change in lysosomes and study its possible effects.

Keywords: Fluorescent probe; Heat stroke; Lysosomal pH; Near-infrared; Si-rhodamine.

PubMed Disclaimer

MeSH terms

LinkOut - more resources