Role of hypoxia in cancer therapy by regulating the tumor microenvironment
- PMID: 31711497
- PMCID: PMC6844052
- DOI: 10.1186/s12943-019-1089-9
Role of hypoxia in cancer therapy by regulating the tumor microenvironment
Abstract
Aim: Clinical resistance is a complex phenomenon in major human cancers involving multifactorial mechanisms, and hypoxia is one of the key components that affect the cellular expression program and lead to therapy resistance. The present study aimed to summarize the role of hypoxia in cancer therapy by regulating the tumor microenvironment (TME) and to highlight the potential of hypoxia-targeted therapy.
Methods: Relevant published studies were retrieved from PubMed, Web of Science, and Embase using keywords such as hypoxia, cancer therapy, resistance, TME, cancer, apoptosis, DNA damage, autophagy, p53, and other similar terms.
Results: Recent studies have shown that hypoxia is associated with poor prognosis in patients by regulating the TME. It confers resistance to conventional therapies through a number of signaling pathways in apoptosis, autophagy, DNA damage, mitochondrial activity, p53, and drug efflux.
Conclusion: Hypoxia targeting might be relevant to overcome hypoxia-associated resistance in cancer treatment.
Keywords: Cancer therapy; Chemotherapy; Drug resistance; Hypoxia; Tumor microenvironment.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures


References
-
- Gatti L, Zunino F. Overview of tumor cell chemoresistance mechanisms. Methods in molecular medicine. 2005;111:127. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous