Antitubercular Triazines: Optimization and Intrabacterial Metabolism
- PMID: 31711854
- PMCID: PMC7035970
- DOI: 10.1016/j.chembiol.2019.10.010
Antitubercular Triazines: Optimization and Intrabacterial Metabolism
Abstract
The triazine antitubercular JSF-2019 was of interest due to its in vitro efficacy and the nitro group shared with the clinically relevant delamanid and pretomanid. JSF-2019 undergoes activation requiring F420H2 and one or more nitroreductases in addition to Ddn. An intrabacterial drug metabolism (IBDM) platform was leveraged to demonstrate the system kinetics, evidencing formation of NO⋅ and a des-nitro metabolite. Structure-activity relationship studies focused on improving the solubility and mouse pharmacokinetic profile of JSF-2019 and culminated in JSF-2513, relying on the key introduction of a morpholine. Mechanistic studies with JSF-2019, JSF-2513, and other triazines stressed the significance of achieving potent in vitro efficacy via release of intrabacterial NO⋅ along with inhibition of InhA and, more generally, the FAS-II pathway. This study highlights the importance of probing IBDM and its potential to clarify mechanism of action, which in this case is a combination of NO⋅ release and InhA inhibition.
Keywords: Bayesian models; Mycobacterium tuberculosis; intrabacterial drug metabolism; nitrofuran; triazine.
Copyright © 2019 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Interests The authors declare no competing interests.
Figures
References
-
- Albesa-Jove D, Chiarelli LR, Makarov V, Pasca MR, Urresti S, Mori G, Salina E, Vocat A, Comino N, Mohorko E, et al. (2014). Rv2466c mediates the activation of TP053 to kill replicating and non-replicating Mycobacterium tuberculosis. ACS Chem Biol 9, 1567–1575. - PubMed
-
- Allison BD, Phuong VK, McAtee LC, Rosen M, Morton M, Prendergast C, Barrett T, Lagaud G, Freedman J, Li L, et al. (2006). Identification and optimization of anthranilic sulfonamides as novel, selective cholecystokinin-2 receptor antagonists. J Med Chem 49, 6371–6390. - PubMed
-
- Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, et al. (2005). A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science (New York, NY) 307, 223–227. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
