Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 22;120(2):986-1041.
doi: 10.1021/acs.chemrev.9b00187. Epub 2019 Nov 14.

Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations

Affiliations

Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations

Alexandra Gellé et al. Chem Rev. .

Abstract

Localized surface plasmon resonance (LSPR) is a physical phenomenon exhibited by nanoparticles of metals including coinage metals, alkali metals, aluminum, and some semiconductors which translates into electromagnetic, thermal, and chemical properties. In the past decade, LSPR has been taken advantage of in the context of catalysis. While plasmonic nanoparticles (PNPs) have been successfully applied toward enhancing catalysis of inorganic reactions such as water splitting, they have also demonstrated exciting performance in the catalysis of organic transformations with potential applications in synthesis of molecules from commodity to pharmaceutical compounds. The advantages of this approach include improved selectivity, enhanced reaction rates, and milder reaction conditions. This review provides the basics of LSPR theory, details the mechanisms at play in plasmon-enhanced nanocatalysis, sheds light onto such nanocatalyst design, and finally systematically presents the breadth of organic reactions hence catalyzed.

PubMed Disclaimer

Publication types

LinkOut - more resources