Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 14;7(1):304.
doi: 10.1186/s40425-019-0806-7.

CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma

Affiliations

CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma

Bryan D Choi et al. J Immunother Cancer. .

Abstract

Despite remarkable success in the treatment of hematological malignancies, CAR T-cell therapies for solid tumors have floundered, in large part due to local immune suppression and the effects of prolonged stimulation leading to T-cell dysfunction and exhaustion. One mechanism by which gliomas and other cancers can hamper CAR T cells is through surface expression of inhibitory ligands such as programmed cell death ligand 1 (PD-L1). Using the CRIPSR-Cas9 system, we created universal CAR T cells resistant to PD-1 inhibition through multiplexed gene disruption of endogenous T-cell receptor (TRAC), beta-2 microglobulin (B2M) and PD-1 (PDCD1). Triple gene-edited CAR T cells demonstrated enhanced activity in preclinical glioma models. Prolonged survival in mice bearing intracranial tumors was achieved after intracerebral, but not intravenous administration. CRISPR-Cas9 gene-editing not only provides a potential source of allogeneic, universal donor cells, but also enables simultaneous disruption of checkpoint signaling that otherwise impedes maximal antitumor functionality.

Keywords: CRISPR-Cas systems; EGFRvIII; Glioblastoma; Receptors, chimeric antigen.

PubMed Disclaimer

Conflict of interest statement

B.D.C. and M.V.M are inventors on patents related to the use of engineered cell therapies and bispecific T-cell engagers for GBM and other cancers. B.D.C. received commercial research grants from ACEA Biosciences. M.V.M. received commercial research grants from Kite Pharma, TCR2, Agentus, and CRISPR Therapeutics, and is a consultant or advisory board member for Adaptimmune, Agentus, Cellectis, CRISPR Therapeutics, Kite Pharma, Novartis, TCR2, and Windmil (unrelated to this work). H.D., D.B.H., and J.G.S. are employees at CRISPR Therapeutics who possess stock or options in the company.

Figures

Fig. 1
Fig. 1
Multiplexed CRISPR-Cas9 gene-editing is efficient in primary human T cells. a Schematic representation of the EGFRvIII targeted CAR construct. b Primary human T cells were stimulated, RNP electroporated and transduced to produce CAR T cells. c Following expansion, cells were subjected to flow cytometry for TCR and B2M expression. d Bivariate plot displays frequency of cells with both TCR and B2M deletion. e EGFRvIII CAR T cells that have been gene-edited for PD-1 (CART-EGFRvIIIΔPD-1) do not have the ability to interact with PD-L1 expressed on target cells. f Effector cells were incubated with irradiated U87vIII for 1 week and subjected to flow cytometric analysis for surface PD-1 expression. The control group contains cells gene-edited for both TCR and B2M, and mock transduced with AAV
Fig. 2
Fig. 2
PD-1 disruption promotes favorable differentiation of CAR T cells targeting PD-L1 expressing glioma. Effector cells were cocultured with irradiated target U87vIII at and E:T of 1:1. The phenotype of T cells were assessed at Day 1 (prior to stimulation) and at Day 21 by flow cytometry. Cells were grouped by flow cytometry according to T-cell phenotype as follows: naïve (TN) CCR7+CD45RO, central memory (TCM) CCR7+CD45RO+, effector memory (TEM) CCR7CD45RO+, and effector (TE) CCR7CD45RO
Fig. 3
Fig. 3
PD-1 disruption enhances EGFRvIII CAR T cells. a Cytokine production by CAR-transduced primary human T cells when cocultured for 18 h at an E:T of 1:1. b Proliferation assessment of effector cells stimulated weekly with irradiated U87vIII. c Impedance-based cytotoxicity assay measuring activity of effector cells against U87vIII at an E:T of 1:3, with cell index serving as an inverse measure of target cell viability. Assays were performed in triplicate (mean ± SEM is depicted; unpaired, two-tailed t-test, * = P < 0.05, *** = p < 0.001)
Fig. 4
Fig. 4
Intravenous delivery of CAR T cells does not significantly prolong survival in mice. a U87vIII cells (5 × 103) were implanted orthotopically into NSG mice and treated post-implantation with intravenous (IV) effector cells. b Antitumor responses produced by CART-EGFRvIIIΔPD-1 in vivo. Survival curves were estimated for each group using Kaplan–Meier product-limit estimation. Primary comparative analyses of the curves for each group were performed using the log-rank test. c Bioluminescence imaging of U87vIII tumor growth over time, n = 5 mice
Fig. 5
Fig. 5
Intraventricular infusion with gene-edited CAR T cells is efficacious against GBM. a U87vIII cells (5 × 103) were implanted orthotopically into NSG mice and treated post-implantation with intraventricular (IVT) effector cells. b Antitumor responses produced by CART-EGFRvIIIΔPD-1 in vivo. Survival curves were estimated for each group using Kaplan–Meier product-limit estimation. Primary comparative analyses of the curves for each group were performed using the log-rank test (*** = p < 0.001). c Bioluminescence imaging of U87vIII tumor growth over time, n = 5 mice

References

    1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–820. doi: 10.1007/s00401-016-1545-1. - DOI - PubMed
    1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–466. doi: 10.1016/S1470-2045(09)70025-7. - DOI - PubMed
    1. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of Glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–2569. doi: 10.1056/NEJMoa1610497. - DOI - PMC - PubMed
    1. Mullard A. FDA approves first CAR T therapy. Nat Rev Drug Discov. 2017;16(10):669. - PubMed
    1. Choi BD, Maus MV, June CH, Sampson JH. Immunotherapy for Glioblastoma: adoptive T-cell strategies. Clin Cancer Res. 2019;25(7):2042–2048. doi: 10.1158/1078-0432.CCR-18-1625. - DOI - PMC - PubMed

Publication types

Substances