Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul-Sep;29(3):89-94.
doi: 10.4103/jcecho.jcecho_25_19.

Cardiac Magnetic Resonance in Primary Prevention of Sudden Cardiac Death

Affiliations
Review

Cardiac Magnetic Resonance in Primary Prevention of Sudden Cardiac Death

Giorgio Faganello et al. J Cardiovasc Echogr. 2019 Jul-Sep.

Abstract

Sudden death accounts for 400,000 deaths annually in the United States. Most sudden deaths are cardiac and are related to arrhythmias secondary to structural heart disease or primary electrical abnormalities of the heart. Implantable cardioverter defibrillator significantly improves survival in patients at increased risk of life-threatening arrhythmias, but better selection of eligible patients is required to avoid unnecessary implantation and identify those patients who may benefit most from this therapy. Left ventricular (LV) ejection fraction (EF) measured by echocardiography has been considered the most reliable parameter for long-term outcome in many cardiac diseases. However, LVEF is an inaccurate parameter for arrhythmic risk assessment as patients with normal or mildly reduced LV systolic function could experience sudden cardiac death (SCD). Among other tools for arrhythmic stratification, magnetic resonance (CMR) provides the most comprehensive cardiac evaluation including in vivo tissue characterization and significantly aids in the identification of patients at higher SCD risk. Most of the evidence are related to late gadolinium enhancement (LGE), which was proven to detect cardiac fibrosis. LGE has been reported to add incremental value for prognostic stratification and SCD prediction across a wide range of cardiac diseases, including both ischemic and nonischemic cardiomyopathies. In addition, T1, T2 mapping and extracellular volume assessment were reported to add incremental value for arrhythmic assessment despite suffering from several technical limitations. CMR should be part of a multiparametric approach for patients' evaluation, and it will play a pivotal role in prognostic stratification according to the current evidence.

Keywords: Cardiac magnetic resonance; late gadolinium enhancement; primary prevention; prognostic stratification; sudden cardiac death.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Examples of cardiac magnetic resonance applications in primary prevention: (a) Apical aneurysm of left ventricular with transmural late gadolinium enhancement positivity containing a stratified thrombus after acute myocardial infarction. (b) Diffuse intramyocardial and subepicardial late gadolinium enhancement positivity in a dilated left ventricular consistent with dilated cardiomyopathy. (c) Thickened left ventricular apex with mild late gadolinium enhancement positivity detecting apical hypertrophic cardiomyopathy. (d) Acute myocarditis with subepicardial and intramyocardial edema in a T2-weighted sequence revealing active inflammation. (e) Dilated right ventricular with bulging of the free wall in a patient with arrhythmogenic right ventricular dysplasia. (f) Transmural late gadolinium enhancement of the interventricular septum disclosing sarcoid lesions

Similar articles

Cited by

References

    1. Goldberger JJ, Cain ME, Hohnloser SH, Kadish AH, Knight BP, Lauer MS, et al. American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death: A scientific statement from the American Heart Association council on clinical cardiology committee on electrocardiography and arrhythmias and council on epidemiology and prevention. Circulation. 2008;118:1497–518. - PubMed
    1. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC) Eur Heart J. 2015;36:2793–867. - PubMed
    1. Corrado D, Basso C, Pavei A, Michieli P, Schiavon M, Thiene G. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA. 2006;296:1593–601. - PubMed
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200. - PubMed
    1. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–3.9E+15. - PubMed