Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 28;49(12):3735-3742.
doi: 10.1039/c9dt03591e. Epub 2019 Nov 15.

Tailored protective groups for surface immobilization of ruthenium dyes

Affiliations

Tailored protective groups for surface immobilization of ruthenium dyes

Sebastian Amthor et al. Dalton Trans. .

Abstract

McKenna reaction conditions are applied to the [Ru(4,4'-(CH2PO3Et2)2(bpy)](PF6)2 model chromophore in order to obtain [Ru(4,4'-(CH2PO3TMS2)2(bpy)](Br2-x)(PF6)x (x = 0-2) (2) by replacing the alkyl moieties of the phosphonates with TMS groups (TMS = trimethylsilyl). The model complex is immobilized onto both NiO powder and NiO electrodes on FTO (fluorine doped tin oxide) using organic solvents. The stability of surface binding in aqueous media and the DSC performance of 2 are tested and compared to those of a conventional dye of structure [Ru(4,4'-(CH2PO3TBA2)2(bpy)](PF6)2 (1) (TBA = tetrabutyl ammonium). This is the first example of a ruthenium based chromophore with a phosphonic acid silyl-ester being directly immobilized onto a NiO surface. In addition, complex 2 exhibits superior stability towards desorption in aqueous media and at the same time showing improved DSC performance and stability in acetonitrile and a slightly higher dye loading on the electrode surface compared to 1.

PubMed Disclaimer

LinkOut - more resources