Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec:115:103526.
doi: 10.1016/j.compbiomed.2019.103526. Epub 2019 Oct 31.

Data mining based approach to study the effect of consumption of caffeinated coffee on the generation of the steady-state visual evoked potential signals

Affiliations

Data mining based approach to study the effect of consumption of caffeinated coffee on the generation of the steady-state visual evoked potential signals

Kishore K Tarafdar et al. Comput Biol Med. 2019 Dec.

Abstract

The steady-state visual evoked potentials (SSVEP), are elicited at the parieto-occipital region of the cortex when a light source (3.5-75 Hz), flickering at a constant frequency, stimulates the retinal cells. In the last few decades, researchers have reported that caffeine enhances the vigilance and the executive control of visual attention. However, no study has investigated the effect of caffeinated coffee on the SSVEP response, which is used for controlling the brain-computer interface (BCI) devices for rehabilitative applications. The current work proposes a data mining-based approach to gain insight into the alterations in the SSVEP signals after the consumption of caffeinated coffee. Recurrence quantification analysis (RQA) of the electroencephalogram (EEG) signals was employed for this purpose. The EEG signals were acquired at seven frequencies of photic stimuli. The stimuli frequencies were chosen such that they were distributed throughout the EEG frequency bands. The prominent SSVEP signals were identified using the Canonical Correlation Analysis (CCA) method. Several statistical features were extracted from the recurrence plot of the SSVEP signals. Statistical analyses using the t-test and decision tree-based methods helped to select the most relevant features, which were then classified using Automated Neural Network (ANN). The relevant features could be classified with a maximum accuracy of 97%. This supports our hypothesis that the consumption of caffeinated coffee can alter the SSVEP response. In conclusion, utmost care should be taken in selecting the features for designing BCI devices.

Keywords: Caffeine; Canonical correlation analysis; EEG; Multilayer perceptron network; Recurrence quantification analysis; SSVEP.

PubMed Disclaimer

LinkOut - more resources