Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Mar:274:103337.
doi: 10.1016/j.resp.2019.103337. Epub 2019 Nov 13.

Premature birth, homeostatic plasticity and respiratory consequences of inflammation

Affiliations
Review

Premature birth, homeostatic plasticity and respiratory consequences of inflammation

Estelle B Gauda et al. Respir Physiol Neurobiol. 2020 Mar.

Abstract

Infants who are born premature can have persistent apnea beyond term gestation, reemergence of apnea associated with inflammation during infancy, increased risk of sudden unexplained death, and sleep disorder breathing during infancy and childhood. The autonomic nervous system, particularly the central neural networks that control breathing and peripheral and central chemoreceptors and mechanoreceptors that modulate the activity of the central respiratory network, are rapidly developing during the last trimester (22-37 weeks gestation) of fetal life. With advances in neonatology, in well-resourced, developed countries, infants born as young as 23 weeks gestation can survive. Thus, a substantial part of maturation of central and peripheral systems that control breathing occurs ex-utero in infants born at the limit of viability. The balance of excitatory and inhibitory influences dictates the ultimate output from the central respiratory network. We propose in this review that simply being born early in the last trimester can trigger homeostatic plasticity within the respiratory network tipping the balance toward inhibition that persists in infancy. We discuss the intersection of premature birth, homeostatic plasticity and biological mechanisms leading to respiratory depression during inflammation in former premature infants.

Keywords: Apnea; Carotid body; Inflammation; Respiratory plasticity; Sudden infant death syndrome limit of viability.

PubMed Disclaimer

Publication types

MeSH terms