Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar-Apr;80(1-2):95-107.
doi: 10.1007/BF00231008.

Subtypes of dorsal root ganglion neurons based on different inward currents as measured by whole-cell voltage clamp

Affiliations

Subtypes of dorsal root ganglion neurons based on different inward currents as measured by whole-cell voltage clamp

M J MeLean et al. Mol Cell Biochem. 1988 Mar-Apr.

Abstract

Electrophysiological and pharmacological properties distinguished subtypes of adult mammalian dorsal root ganglion neurons (DRGn) in monolayer dissociated cell culture. By analogy of action potential waveform and duration, neurons with short duration (SDn) and long duration (LDn) action potentials resembled functionally distinct subtypes of DRGn in intact ganglia. Patch clamp and conventional intracellular recording techniques were combined here to elucidate differences in the ionic basis of excitability of subtypes of DRGn in vitro. Both SDn and LDn were quiescent at the resting potential. Action potentials of SDn were brief (less than 2 msec), sensitive to tetrodotoxin (TTX, 5-10 nM), exhibited damped firing during long depolarizations, and did not respond to algesic agents applied by pressure ejection. Action potentials of LDn were 2-6 msec in duration, persisted in 30 microM TTX, and fired repetitively during depolarizing current pulses or exposure to algesic agents (e.g., capsaicin, histamine and bradykinin). Whole-cell recordings from freshly dissociated neurons revealed two inward sodium currents (INa; variable with changes in sodium but not calcium concentration in the superfusate) in various proportions: a rapidly activating and inactivating, TTX-sensitive current; and, a slower, TTX (30 microM)-resistant INa. Large neurons, presumable SDn, had predominantly TTX-sensitive current and little TTX-resistant current. The predominant inward current of small neurons, presumably LDn, was TTX-resistant with a smaller TTX-sensitive component. By analogy to findings from intact ganglia, these results suggest that fundamentally different ionic currents controlling excitability of subtypes of DRGn in vitro may contribute to functional differences between subtypes of neurons in situ.

PubMed Disclaimer

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. J Gen Physiol. 1984 Oct;84(4):505-34 - PubMed
    1. Nature. 1984 May 31-Jun 6;309(5967):453-6 - PubMed
    1. Neurology. 1984 Dec;34(12):1587-90 - PubMed
    1. Biophys J. 1986 Jul;50(1):5-9 - PubMed

Publication types

LinkOut - more resources