Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan:202:111638.
doi: 10.1016/j.jphotobiol.2019.111638. Epub 2019 Oct 29.

Microalgal consortia for municipal wastewater treatment - Lipid augmentation and fatty acid profiling for biodiesel production

Affiliations

Microalgal consortia for municipal wastewater treatment - Lipid augmentation and fatty acid profiling for biodiesel production

Jyoti Sharma et al. J Photochem Photobiol B. 2020 Jan.

Abstract

The present study investigates the phycoremediation potentials of two microalgal consortia (MAC1 and MAC2) for treating sewage water and producing biomass with high lipid, protein and chlorophyll contents. During the study, the microalgal strains were tested for lipid enhancement, biomass production and contaminant removal from wastewater. The microalgal consortia showed prolific growth in wastewater with 75% dilution and accumulated higher lipid content of 31.33% dry cell weight in MAC1. The maximum biomass (50% diluted wastewater) for both the consortia was 1.53 and 1.04 gL-1. Total chlorophyll (19.17-25.17 μg mL-1) and protein contents (0.12-0.16 mg mL-1) for both the consortia were found to be maximum in 75 WW. MAC1 was capable of removing 86.27% of total organic carbon and 87.6% of chemical oxygen demand. Approximately, 94% of nitrate and phosphate contents were removed from the initial contents of wastewater. Heavy metal removal efficiency was also found to be better and showed 85.06% Cu, 75.2% Cr, 98.2% Pb, and 99.6% Cd removal by the algal consortia. Pyrolytic decomposition of algal consortia was observed using thermogravimetric analysis. The stepwise decomposition of algae indicated distinct losses of functional groups. The gas chromatography-mass spectrometric analysis revealed the majority of saturated fatty acids followed by monounsaturated and polyunsaturated fatty acids. Thus, the present study proved that both the consortia show tremendous potential for the treatment of domestic wastewaters with successive lipid enhancement for biodiesel production.

Keywords: Biodiesel; Fatty acids; Lipid enhancement; Microalgal consortia; Phycoremediation; Wastewater.

PubMed Disclaimer

LinkOut - more resources