Inhibition monitoring in veterinary molecular testing
- PMID: 31735123
- PMCID: PMC7649546
- DOI: 10.1177/1040638719889315
Inhibition monitoring in veterinary molecular testing
Abstract
Many of the sample matrices typically used for veterinary molecular testing contain inhibitory factors that can potentially reduce analytic sensitivity or produce false-negative results by masking the signal produced by the nucleic acid target. Inclusion of internal controls in PCR-based assays is a valuable strategy not only for monitoring for PCR inhibitors, but also for monitoring nucleic acid extraction efficiency, and for identifying technology errors that may interfere with the ability of an assay to detect the intended target. The Laboratory Technology Committee of the American Association of Veterinary Laboratory Diagnosticians reviewed the different types of internal controls related to monitoring inhibition of PCR-based assays, and provides information here to encourage veterinary diagnostic laboratories to incorporate PCR internal control strategies as a routine quality management component of their molecular testing.
Keywords: PCR inhibition; internal control; quality assurance; real-time PCR; veterinary molecular tests.
Conflict of interest statement
Figures
References
-
- Akane A, et al. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci 1994;39:362–372. - PubMed
-
- Andersen CL, et al. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004;64:5245–5250. - PubMed
-
- Bickley J, et al. Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calcium ions. Lett Appl Microbiol 1996;22:153–158. - PubMed
