DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity
- PMID: 31736974
- PMCID: PMC6838785
- DOI: 10.3389/fimmu.2019.02559
DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity
Abstract
Neoantigens play important roles in cancer immunotherapy. Current methods used for neoantigen prediction focus on the binding between human leukocyte antigens (HLAs) and peptides, which is insufficient for high-confidence neoantigen prediction. In this study, we apply deep learning techniques to predict neoantigens considering both the possibility of HLA-peptide binding (binding model) and the potential immunogenicity (immunogenicity model) of the peptide-HLA complex (pHLA). The binding model achieves comparable performance with other well-acknowledged tools on the latest Immune Epitope Database (IEDB) benchmark datasets and an independent mass spectrometry (MS) dataset. The immunogenicity model could significantly improve the prediction precision of neoantigens. The further application of our method to the mutations with pre-existing T-cell responses indicating its feasibility in clinical application. DeepHLApan is freely available at https://github.com/jiujiezz/deephlapan and http://biopharm.zju.edu.cn/deephlapan.
Keywords: cancer immunology; deep learning; human leukocyte antigen; neoantigen; recurrent neural network.
Copyright © 2019 Wu, Wang, Zhang, Zhou, Zhao, Su, Gu, Wu, Zhou and Chen.
Figures





Similar articles
-
DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity.Methods Mol Biol. 2024;2809:237-244. doi: 10.1007/978-1-0716-3874-3_15. Methods Mol Biol. 2024. PMID: 38907901
-
Meta learning for mutant HLA class I epitope immunogenicity prediction to accelerate cancer clinical immunotherapy.Brief Bioinform. 2024 Nov 22;26(1):bbae625. doi: 10.1093/bib/bbae625. Brief Bioinform. 2024. PMID: 39656887 Free PMC article.
-
Isolation of T cell receptors targeting recurrent neoantigens in hematological malignancies.J Immunother Cancer. 2018 Jul 13;6(1):70. doi: 10.1186/s40425-018-0386-y. J Immunother Cancer. 2018. PMID: 30001747 Free PMC article.
-
Strategies for neoantigen screening and immunogenicity validation in cancer immunotherapy (Review).Int J Oncol. 2025 Jun;66(6):43. doi: 10.3892/ijo.2025.5749. Epub 2025 May 9. Int J Oncol. 2025. PMID: 40342048 Free PMC article. Review.
-
Best practices for bioinformatic characterization of neoantigens for clinical utility.Genome Med. 2019 Aug 28;11(1):56. doi: 10.1186/s13073-019-0666-2. Genome Med. 2019. PMID: 31462330 Free PMC article. Review.
Cited by
-
Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis.Front Immunol. 2023 Jul 25;14:1094236. doi: 10.3389/fimmu.2023.1094236. eCollection 2023. Front Immunol. 2023. PMID: 37564650 Free PMC article.
-
Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning.Mol Ther Nucleic Acids. 2020 Jun 5;20:882-894. doi: 10.1016/j.omtn.2020.05.006. Epub 2020 May 12. Mol Ther Nucleic Acids. 2020. PMID: 32464552 Free PMC article.
-
FusionNeoAntigen: a resource of fusion gene-specific neoantigens.Nucleic Acids Res. 2024 Jan 5;52(D1):D1276-D1288. doi: 10.1093/nar/gkad922. Nucleic Acids Res. 2024. PMID: 37870454 Free PMC article.
-
Building Personalized Cancer Therapeutics through Multi-Omics Assays and Bacteriophage-Eukaryotic Cell Interactions.Int J Mol Sci. 2021 Sep 8;22(18):9712. doi: 10.3390/ijms22189712. Int J Mol Sci. 2021. PMID: 34575870 Free PMC article. Review.
-
Informing immunotherapy with multi-omics driven machine learning.NPJ Digit Med. 2024 Mar 14;7(1):67. doi: 10.1038/s41746-024-01043-6. NPJ Digit Med. 2024. PMID: 38486092 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials