Does dysbiotic endometrium affect blastocyst implantation in IVF patients?
- PMID: 31741256
- PMCID: PMC6910901
- DOI: 10.1007/s10815-019-01630-7
Does dysbiotic endometrium affect blastocyst implantation in IVF patients?
Abstract
Purpose: To analyze the pregnancy outcomes of IVF patients presenting eubiotic or dysbiotic endometrium at the time of embryo transfer and to analyze what bacterial profiles are suitable for embryo implantation.
Methods: Ninety-nine IVF patients under 40 years old undergoing vitrified-warmed blastocyst transfer in HRT cycle had concurrent endometrial microbiome analysis. Samples from the endometrium were taken from the participants at the time of mock transfer; the bacterial profiles at genus level and percentage of lactobacilli in the endometrium of the patients were analyzed.
Results: Thirty-one cases (31.3%) had dysbiotic endometrium. The background profiles, pregnancy rates per transfer (52.9% vs 54.8%), and miscarriage rates (11.1% vs 5.9%) were comparable between patients with eubiotic or dysbiotic endometrium. Major bacterial genera other than Lactobacillus detected in the dysbiotic endometrium were Atopobium, Gardnerella, and Streptococcus. Some patients achieved ongoing pregnancies with 0% Lactobacillus in the endometrium. The endometrial bacterial profiles of pregnant cases with dysbiotic endometrium were comparable with those of non-pregnant cases.
Conclusion: Analyzing microbiota at the species-level resolution may be necessary for identifying the true pathogenic bacteria of the endometrium and avoiding over-intervention against non-Lactobacillus microbiota. Further studies are necessary for analyzing the mechanism of how the pathogenic bacteria affect embryo implantation.
Keywords: Blastocyst; Embryo implantation; Endometrium; High-throughput nucleotide sequencing; Microbiota.
Conflict of interest statement
These authors declare that they have no conflicts of interest.
Figures


References
-
- Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, Li F, Yu X, Feng Q, Wang Z, Xie H, Chen X, Zeng C, Wen B, Zeng L, du H, Tang H, Xu C, Xia Y, Xia H, Yang H, Wang J, Wang J, Madsen L, Brix S, Kristiansen K, Xu X, Li J, Wu R, Jia H. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 2017;8(1):875. doi: 10.1038/s41467-017-00901-0. - DOI - PMC - PubMed
-
- Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, Alonso R, Alamá P, Remohí J, Pellicer A, Ramon D, Simon C. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016;215(6):684–703. doi: 10.1016/j.ajog.2016.09.075. - DOI - PubMed
-
- Kyono K, Hashimoto T, Kikuchi S, Nagai Y, Sakuraba Y. A pilot study and case reports on endometrial microbiota and pregnancy outcome: an analysis using 16S rRNA gene sequencing among IVF patients, and trial therapeutic intervention for dysbiotic endometrium. Reprod Med Biol. 2018;18(1):72–82. doi: 10.1002/rmb2.12250. - DOI - PMC - PubMed
-
- Ruiz-Alonso M, Blesa D, Díaz-Gimeno P, Gomez E, Fernandez-Sanchez M, Carranza F, et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril. 2013;100:818–824. doi: 10.1016/j.fertnstert.2013.05.004. - DOI - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources