Artificial Intelligence Techniques for Automated Diagnosis of Neurological Disorders
- PMID: 31743905
- DOI: 10.1159/000504292
Artificial Intelligence Techniques for Automated Diagnosis of Neurological Disorders
Abstract
Background: Authors have been advocating the research ideology that a computer-aided diagnosis (CAD) system trained using lots of patient data and physiological signals and images based on adroit integration of advanced signal processing and artificial intelligence (AI)/machine learning techniques in an automated fashion can assist neurologists, neurosurgeons, radiologists, and other medical providers to make better clinical decisions.
Summary: This paper presents a state-of-the-art review of research on automated diagnosis of 5 neurological disorders in the past 2 decades using AI techniques: epilepsy, Parkinson's disease, Alzheimer's disease, multiple sclerosis, and ischemic brain stroke using physiological signals and images. Recent research articles on different feature extraction methods, dimensionality reduction techniques, feature selection, and classification techniques are reviewed. Key Message: CAD systems using AI and advanced signal processing techniques can assist clinicians in analyzing and interpreting physiological signals and images more effectively.
Keywords: Classification algorithm; Computer-aided diagnosis; Machine learning; Neurological disorder.
© 2019 S. Karger AG, Basel.
Similar articles
-
AI-based computer-aided diagnosis (AI-CAD): the latest review to read first.Radiol Phys Technol. 2020 Mar;13(1):6-19. doi: 10.1007/s12194-019-00552-4. Epub 2020 Jan 2. Radiol Phys Technol. 2020. PMID: 31898014 Review.
-
Diseases diagnosis based on artificial intelligence and ensemble classification.Artif Intell Med. 2024 Feb;148:102753. doi: 10.1016/j.artmed.2023.102753. Epub 2023 Dec 29. Artif Intell Med. 2024. PMID: 38325931
-
Computer-aided diagnosis in the era of deep learning.Med Phys. 2020 Jun;47(5):e218-e227. doi: 10.1002/mp.13764. Med Phys. 2020. PMID: 32418340 Free PMC article. Review.
-
Artificial intelligence as an emerging technology in the current care of neurological disorders.J Neurol. 2021 May;268(5):1623-1642. doi: 10.1007/s00415-019-09518-3. Epub 2019 Aug 26. J Neurol. 2021. PMID: 31451912 Review.
-
AAPM task group report 273: Recommendations on best practices for AI and machine learning for computer-aided diagnosis in medical imaging.Med Phys. 2023 Feb;50(2):e1-e24. doi: 10.1002/mp.16188. Epub 2023 Jan 6. Med Phys. 2023. PMID: 36565447
Cited by
-
Multiresolution feature fusion for smart diagnosis of schizophrenia in adolescents using EEG signals.Cogn Neurodyn. 2024 Oct;18(5):2779-2807. doi: 10.1007/s11571-024-10120-1. Epub 2024 May 11. Cogn Neurodyn. 2024. PMID: 39555262
-
Internet of Things Technologies and Machine Learning Methods for Parkinson's Disease Diagnosis, Monitoring and Management: A Systematic Review.Sensors (Basel). 2022 Feb 24;22(5):1799. doi: 10.3390/s22051799. Sensors (Basel). 2022. PMID: 35270944 Free PMC article.
-
Monitoring and Predicting Health Status in Neurological Patients: The ALAMEDA Data Collection Protocol.Healthcare (Basel). 2023 Sep 29;11(19):2656. doi: 10.3390/healthcare11192656. Healthcare (Basel). 2023. PMID: 37830693 Free PMC article.
-
Application of Deep Learning Models for Automated Identification of Parkinson's Disease: A Review (2011-2021).Sensors (Basel). 2021 Oct 23;21(21):7034. doi: 10.3390/s21217034. Sensors (Basel). 2021. PMID: 34770340 Free PMC article. Review.
-
Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach.Cogn Neurodyn. 2021 Apr;15(2):239-252. doi: 10.1007/s11571-020-09619-0. Epub 2020 Jul 26. Cogn Neurodyn. 2021. PMID: 33854642 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous