Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 19;16(1):139.
doi: 10.1186/s12985-019-1243-4.

Intra-species recombination among strains of the ampelovirus Grapevine leafroll-associated virus 4

Affiliations

Intra-species recombination among strains of the ampelovirus Grapevine leafroll-associated virus 4

Jati Adiputra et al. Virol J. .

Abstract

Background: Grapevine leafroll disease is one of the most economically important viral diseases affecting grape production worldwide. Grapevine leafroll-associated virus 4 (GLRaV-4, genus Ampelovirus, family Closteroviridae) is one of the six GLRaV species documented in grapevines (Vitis spp.). GLRaV-4 is made up of several distinct strains that were previously considered as putative species. Currently known strains of GLRaV-4 stand apart from other GLRaV species in lacking the minor coat protein.

Methods: In this study, the complete genome sequence of three strains of GLRaV-4 from Washington State vineyards was determined using a combination of high-throughput sequencing, Sanger sequencing and RACE. The genome sequence of these three strains was compared with corresponding sequences of GLRaV-4 strains reported from other grapevine-growing regions. Phylogenetic analysis and SimPlot and Recombination Detection Program (RDP) were used to identify putative recombination events among GLRaV-4 strains.

Results: The genome size of GLRaV-4 strain 4 (isolate WAMR-4), strain 5 (isolate WASB-5) and strain 9 (isolate WALA-9) from Washington State vineyards was determined to be 13,824 nucleotides (nt), 13,820 nt, and 13,850 nt, respectively. Multiple sequence alignments showed that a 11-nt sequence (5'-GTAATCTTTTG-3') towards 5' terminus of the 5' non-translated region (NTR) and a 10-nt sequence (5'-ATCCAGGACC-3') towards 3' end of the 3' NTR are conserved among the currently known GLRaV-4 strains. LR-106 isolate of strain 4 and Estellat isolate of strain 6 were identified as recombinants due to putative recombination events involving divergent sequences in the ORF1a from strain 5 and strain Pr.

Conclusion: Genome-wide analyses showed for the first time that recombinantion can occur between distinct strains of GLRaV-4 resulting in the emergence of genetically stable and biologically successful chimeric viruses. Although the origin of recombinant strains of GLRaV-4 remains elusive, intra-species recombination could be playing an important role in shaping genetic diversity and evolution of the virus and modulating the biology and epidemiology of GLRaV-4 strains.

Keywords: Ampelovirus; Grapevine leafroll disease; Grapevine leafroll-associated virus 4.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Analysis of recombination events in the genome of GLRaV-4 strains. (a) Graphical representation (not drawn to scale) of the generalized genome map of GLRaV-4. Individual open reading frames (ORFs) are shown as boxes with associated protein designations used for closteroviruses [2] and numbered 1 to 6 above the diagram. Abbreviations of ORFs: L-Pro, papain-like leader protease; MET, methyltransferase domain; HEL, RNA helicase domain; AlkB, the AlkB domain; RdRp, RNA-dependent RNA polymerase; p5, 5 kDa protein; Hsp70h, heat shock protein 70 homolog; CP, coat protein; p23, 23 kDa protein. Lines at the genome extremities represent non-translated regions. b Putative recombinant events in isolates LR106 and Estellat. (B-1) and (B-2) represent, respectively, recombination event-1 (nt 4105–5240) and event-2 (nt 627–1551) in ORF1a of the LR106 isolate and (B-3) represents recombinant event (nt 1–6312) in the genome of the Estellat isolate identified by the RDP. The X-axis indicates the nucleotide position in the alignment and the Y-axis shows informative nucleotide pairwise identity between parental and recombinant isolates. The color key of the parental isolates is shown next to the plots
Fig. 2
Fig. 2
Multiple sequence alignment of the (a) 5′ and (b) 3′ nontranslated regions of GLRaV-4 strains. Asterisk (*) indicates conserved residues. The conserved nt at the 5' and 3' ends is highlighted. The alignment was adjusted manually and gaps (shown as '-') introduced for optimal alignment of sequences
Fig. 3
Fig. 3
Phylogenetic evidence for recombination among GLRaV-4 strains. Nucleotide sequence corresponding to (a) the CP, (b) ORF1a, recombinant regions identified for putative (c) event-1 (nt 4105–5240) and (d) event-2 (nt 627–1551) in ORF1a of the LR106 isolate, and (e) event-3 (nt 1–6312) in the Estellat isolate were used for constructing the Maximum-likelihood method-besed trees with 1000 replicates, using the MEGA 7 software. Recombinant isolates showing phylogenetic discordance are indicated in red color. Refer to Fig. 1b and Table 2 for details of putative recombinant event-1, event-2 and event3

References

    1. Naidu RA, Maree HJ, Burger JT. Grapevine leafroll disease and associated viruses: a unique Pathosystem. Annu Rev Phytopathol. 2015;53:613–634. doi: 10.1146/annurev-phyto-102313-045946. - DOI - PubMed
    1. Dolja VV, Meng B, Martelli GP. Evolutionary aspects of grapevine virology. In: Meng B, Martelli GP, Golino D, editors. Grapevine viruses: molecular biology, diagnostics and management. Switzerland: Springer, Cham; 2017. pp. 659–688.
    1. Herrbach E, Alliaume A, Prator C, Daane K, Cooper M, Almeida R. Vector transmission of grapevine leafroll-associated viruses. In: Meng B, Martelli GP, Golino D, editors. Grapevine viruses: molecular biology, diagnostics and management. Switzerland: Springer, Scham; 2017. pp. 483–503.
    1. Mikona C, Jelkmann W. Replication of Grapevine leafroll-associated virus-7 (GLRaV-7) by Cuscuta species and its transmission to herbaceous plants. Plant Dis. 2010;94(4):471–476. doi: 10.1094/PDIS-94-4-0471. - DOI - PubMed
    1. Maliogka VI, Dovas CI, Katis NI. Evolutionary relationships of virus species belonging to a distinct lineage within the Ampelovirus genus. Virus Res. 2008;135(1):125–135. doi: 10.1016/j.virusres.2008.02.015. - DOI - PubMed

Publication types