Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Nov 19;16(1):142.
doi: 10.1186/s12984-019-0612-y.

Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment

Affiliations
Review

Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment

Pablo Maceira-Elvira et al. J Neuroeng Rehabil. .

Abstract

Stroke is one of the main causes of long-term disability worldwide, placing a large burden on individuals and society. Rehabilitation after stroke consists of an iterative process involving assessments and specialized training, aspects often constrained by limited resources of healthcare centers. Wearable technology has the potential to objectively assess and monitor patients inside and outside clinical environments, enabling a more detailed evaluation of the impairment and allowing the individualization of rehabilitation therapies. The present review aims to provide an overview of wearable sensors used in stroke rehabilitation research, with a particular focus on the upper extremity. We summarize results obtained by current research using a variety of wearable sensors and use them to critically discuss challenges and opportunities in the ongoing effort towards reliable and accessible tools for stroke rehabilitation. Finally, suggestions concerning data acquisition and processing to guide future studies performed by clinicians and engineers alike are provided.

Keywords: Home-based; Monitor; Motor function; Rehabilitation; Remote; Stroke; Telemedicine; Wearable technology.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
IMU sensors (orange) used to track arm movements. Sensors placed on the back of the hands, forearms and upper arms capture acceleration (linear and angular) and orientation of each segment, allowing kinematic reconstruction or movement characterization
Fig. 2
Fig. 2
EMG sensors (green) placed over biceps and flexor digitorum superficialis muscles, involved in elbow and wrist flexion, respectively. Electrodes placed asymmetrically with respect to the neuromuscular plaques allow capturing the electrical potential difference as the depolarization wave travels along the muscle cells’ membranes. Resulting signal (top left) is filtered and amplified for further processing
Fig. 3
Fig. 3
Encoder (blue) mounted on a hand orthosis, aligned with the rotation axis of the index finger. This configuration allows tracking angular displacement of fingers supported by the orthosis
Fig. 4
Fig. 4
Flexible sensors (red) laid along the fingers. Their flexion results in piezo-resistive changes in the conducting material (e.g. silver nanoparticles), which map directly to different finger positions. Prototype IMU sensor glove by Noitom [84]

References

    1. Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circ Res. 2017;120(3):439–448. doi: 10.1161/CIRCRESAHA.116.308413. - DOI - PubMed
    1. Vos T, Allen C, Arora M, Barber RM, Brown A, Carter A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1545–1602. doi: 10.1016/S0140-6736(16)31678-6. - DOI - PMC - PubMed
    1. Kwakkel G, Kollen BJ, Van der Grond JV, Prevo AJH. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–2186. doi: 10.1161/01.STR.0000087172.16305.CD. - DOI - PubMed
    1. Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017;31(9):793–799. doi: 10.1177/1545968317732668. - DOI - PubMed
    1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–1702. doi: 10.1016/S0140-6736(11)60325-5. - DOI - PubMed

Publication types