Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 27;59(5):1891-1896.
doi: 10.1002/anie.201912514. Epub 2019 Dec 18.

DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells

Affiliations

DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells

Mengyi Xiong et al. Angew Chem Int Ed Engl. .

Abstract

Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+ -specific 10-23 or Zn2+ -specific 8-17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.

Keywords: DNAzymes; fluorescent proteins; genetically encoded sensors; metal ions.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
(a) The structure of the 10-23 DNAzyme and detection of the RNA substrate cleavage catalysis. (b) Gel electrophoresis analysis of the RNA cleavage efficiency by using 8Dz, 9Dz, 10Dz, 11Dz, and 12Dz with a DNAzyme: substrate ratio of 10:1. (c) The quantification of the gel electrophoresis analysis.
Figure 2.
Figure 2.
Confocal imaging of the cells expressing CloverFP (green channel) and RubyFP (red channel). The cells were transfected with plasmids only (first row) or with plasmids and Dz10TCloverFP with different concentrations of added Mg2+ (second to fourth rows). Scale bar = 100 μm.
Figure 3.
Figure 3.
Confocal imaging of cells co-transfected with CloverFP plasmid (green channel) and Cy5-DNA (red channel) at 6 h and 24h. The lysosomes of cells were stained with Lysotracker Green. (The CloverFP expressing cells exhibited green fluorescence in the whole cells). Scale bar = 20 μm.
Figure 4.
Figure 4.
(a) The contour charts of flow cytometry when Dz10TCloverFP or Dz10HCloverFP was applied to different concentrations of Mg2+. (b) Fluorescent signal ratio of RubyFP to CloverFP in different concentrations of Mg2+ when Dz10TCloverFP or Dz10HCloverFP was used. (c) Comparison of the ratio generated by Dz10TCloverFP or Dz10HCloverFP and Dz10TMCloverFP or Dz10HMCloverFP in the absence or presence of Mg2+.
Scheme 1.
Scheme 1.
Schematic illustration of DNAzyme-mediated genetically encoded sensors for ratiometric imaging of metal ions in living cells.

Similar articles

Cited by

References

    1. Que EL, Domaille DW, Chang CJ, Chem. Rev 2008, 108, 1517–1549; - PubMed
    2. Qian X, Xu Z, Chem. Soc. Rev 2015, 44, 4487–4493. - PubMed
    1. Jiang P, Guo Z, Coord. Chem. Rev 2004, 248, 205–229;
    2. Kikuchi K, Komatsu K, Nagano T, Curr. Opin. Chem. Biol 2004, 8, 182–191; - PubMed
    3. Taki M, Wolford JL, O’Halloran TV, J. Am. Chem. Soc 2004, 126, 712–713; - PubMed
    4. Komatsu K, Urano Y, Kojima H, Nagano T, J. Am. Chem. Soc 2007, 129, 13447–13454; - PubMed
    5. Kennedy DP, Kormos CM, Burdette SC, J. Am. Chem. Soc 2009, 131, 8578–8586; - PubMed
    6. McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ, Chem. Rev 2009, 109, 4780–4827; - PMC - PubMed
    7. Nolan EM, Lippard SJ, Acc. Chem. Res 2009, 42, 193–203; - PMC - PubMed
    8. Mikata Y, Kawata K, Takeuchi S, Nakanishi K, Konno H, Itami S, Yasuda K, Tamotsu S, Burdette SC, Dalton Trans. 2014, 43, 10751–10759; - PubMed
    9. Qiu L, Zhu C, Chen H, Hu M, He W, Guo Z, Chem. Commun 2014, 50, 4631–4634; - PubMed
    10. Sareen D, Kaur P, Singh K, Coord. Chem. Rev 2014, 265, 125–154;
    11. Cotruvo JA Jr., Aron AT, Ramos-Torres KM, Chang CJ, Chem. Soc. Rev 2015, 44, 4400–4414; - PMC - PubMed
    12. Aron AT, Loehr MO, Bogena J, Chang CJ, J. Am. Chem. Soc 2016, 138, 14338–14346; - PMC - PubMed
    13. Kaur N, Kaur P, Singh K, Sensor Actuat. B-Chem 2016, 229, 499–505;
    14. Hirata T, Terai T, Yamamura H, Shirnonishi M, Komatsu T, Hanaoka K, Ueno T, Imaizumi Y, Nagano T, Urano Y, Anal. Chem 2016, 88, 2693–2700; - PubMed
    15. Jia S, Ramos-Torres KM, Kolemen S, Ackerman CM, Chang CJ, ACS Chem. Biol 2018, 13, 1844–1852; - PMC - PubMed
    16. Bourassa D, Elitt CM, McCallum AM, Sumalekshmy S, McRae RL, Morgan MT, Siegel N, Perry JW, Rosenberg PA, Fahrni CJ, ACS Sensors 2018, 3, 458–467; - PMC - PubMed
    17. Goldberg JM, Wang F, Sessler CD, Vogler NW, Zhang DY, Loucks WH, Tzounopoulos T, Lippard SJ, J. Am. Chem. Soc 2018, 140, 2020–2023; - PMC - PubMed
    18. Matsui Y, Mizukami S, Kikuchi K, Chem. Lett 2018, 47, 23–26.
    1. Huang X, Meng J, Dong Y, Cheng Y, Zhu C, Polymer 2010, 51, 3064–3067.
    1. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikurak M, Tsien RY, Nature 1997, 388, 882–887; - PubMed
    2. Outten CE, O’Halloran TV, Science 2001, 292, 2488–2492; - PubMed
    3. Chen P, He C, J. Am. Chem. Soc 2004, 126, 728–729; - PubMed
    4. Palmer AE, Jin C, Reed JC, Tsien RY, Proc. Natl. Acad. Sci. USA 2004, 101, 17404–17409; - PMC - PubMed
    5. Van Dongen EMWM, Dekkers LM, Spijker K, Meijer EW, Klomp LWJ, Merkx M, J. Am. Chem. Soc 2006, 128, 10754–10762; - PubMed
    6. Wegner SV, Okesli A, Chen P, He C, J. Am. Chem. Soc 2007, 129, 3474–3475; - PubMed
    7. Wallace DJ, Borgloh S, Astori S, Yang Y, Bausen M, Kugler S, Palmer AE, Tsien RY, Sprengel R, Kerr JND, Denk W, Hasan MT, Nat. Methods 2008, 5, 797–804; - PubMed
    8. Qin Y, Dittmer PJ, Park JG, Jansen KB, Palmer AE, Proc. Natl. Acad. Sci. USA 2011, 108, 7351–7356; - PMC - PubMed
    9. Lindenburg LH, Vinkenborg JL, Oortwijn J, Aper SJA, Merkx M, Plos One 2013, 8, e82009; - PMC - PubMed
    10. Carter KP, Young AM, Palmer AE, Chem. Rev 2014, 114, 4564–4601; - PMC - PubMed
    11. Hessels AM, Merkx M, Metallomics 2015, 7, 258–266; - PubMed
    12. Shen Y, Wu SY, Rancic V, Aggarwal A, Qian Y, Miyashita SI, Ballanyi K, Campbell RE, Dong M, Commun. Biol 2019, 2, 18. - PMC - PubMed
    1. Park JG, Qin Y, Galati DF, Palmer AE, ACS Chem. Biol 2012, 7, 1636–1640. - PMC - PubMed

Publication types