Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Practice Guideline
. 2020;33(1):44-60.
doi: 10.1159/000504063. Epub 2019 Nov 20.

EEMCO Guidance for the in vivo Assessment of Biomechanical Properties of the Human Skin and Its Annexes: Revisiting Instrumentation and Test Modes

Affiliations
Practice Guideline

EEMCO Guidance for the in vivo Assessment of Biomechanical Properties of the Human Skin and Its Annexes: Revisiting Instrumentation and Test Modes

Luis Monteiro Rodrigues et al. Skin Pharmacol Physiol. 2020.

Abstract

Biomechanics of the skin is an important subject in skin research. It has been studied for many decades involving various technologies and methods to characterize and quantify mechanical properties of the skin under different in vivo conditions. The present EEMCO paper reviews the current rel-evant information, providing practical orientation to researchers dedicated to in vivo assessment of biomechanics of skin and its annexes. We discuss the available non-invasive instruments, including their principles and variables. A correspondence between the descriptors nomenclature proposed by Agache and the designation for the suction-based standard instruments is proposed. The addressed properties include skin softness/stiffness, firmness, elasticity, elastic and viscoelastic properties, extensibility, resilience, anisotropy, acoustical shock wave hardness, friction (in relation to topographic properties), thickness, fiber/stress mechanics (bending, cyclic, tensile, fatigue, or torsion), and hardness. We provide the relation of these properties to biomechanical descriptors and in some cases to SI units. Practical guidance for the proper use of these instruments, limitations, and possible interpretations are provided, while discussing the meaning of descriptive or "phenomenological" variables. For studies intended to quantify the effect of an intervention with regard to mechanical properties, we recommend a minimum of 30-40 participants, based on normal distribution of the data sets. Some important limitations are recognized, including the lack of standardization of procedures and calibration of instruments, which compromises the relevance and real nature of the descriptors/parameters obtained with these devices. The present work highlights an approach to a better practice and a science-supported biomechanical assessment of human skin, hair, and nails.

Keywords: Anisotropy; Cosmetics efficacy; Elasticity; Hair; Instrumental measurements; Mechanical properties; Nails; Skin; Testing methods; Testing modes.

PubMed Disclaimer

Publication types

LinkOut - more resources