Electrochemiluminescent immunoassay for neuron specific enolase by using amino-modified reduced graphene oxide loaded with N-doped carbon quantum dots
- PMID: 31749073
- DOI: 10.1007/s00604-019-3986-4
Electrochemiluminescent immunoassay for neuron specific enolase by using amino-modified reduced graphene oxide loaded with N-doped carbon quantum dots
Abstract
An ultrasensitive electrochemiluminescence based sandwich immunoassay is presented for determination of neuron specific enolase. The method uses silver-cysteine nanowires as the capture probe and a composite made of amino-modified reduced graphene oxide and nitrogen-doped carbon quantum dots as the signal probe. It was synthesized by covalent coupling of amino-modified reduced graphene oxide to the carboxy groups of nitrogen-doped carbon quantum dots. The nanowires possess a large specific surface and abundant functional groups which facilitate immobilizing the primary antibody (Ab1). The amino-modified reduced graphene oxide is employed as a carrier for loading a large number of the quantum dots and secondary antibody (Ab2). This increases the electrochemiluminescence intensity of quantum dots. Response to neuron specific enolase is linear in the 0.55 fg·mL-1 to 5.5 ng·mL-1 concentration range. It has a detection limit of 0.18 fg·mL-1 (at S/N = 3). The relative standard deviation (for n = 6) is less than 2.9%. The assay is highly sensitive, reproducible, selective and stable. Graphical abstractA novel electrochemiluminescence immunosensor is described that uses amino-modified reduced graphene oxide (amino-rGO), nitrogen-doped carbon quantum dots (N-CQDs) and silver-cysteine nanowires (SCNWs). It was applied to the determination of neuron specific enolase (NSE). Bovine serum albumin: BSA;1-ethyl-3-(3-dimethylaminopropyl)carbodiimide: (EDC;, N-hydroxysuccinimide: NHS.
Keywords: Carbon quantum dots; Graphene oxide; Neuron specific enolase; Sensor; Silver-cysteine nanowires.